
Digital Technologies – 5 and 6_ Creating a digital solution

Mapping template © Victorian Curriculum and Assessment Authority (VCAA). Creative Commons BY-NC-SA 3.0 AU.

 STRAND Knowledge and understanding Processes and production skills

Digital Systems

Representation of data

Collecting, managing and

analysing data

Creating Digital Solutions by:

Investigating and defining Generating and designing Producing and
implementing

Evaluating Collaborating and managing

Content

Description

Examine the main

components of common

digital systems and how

they may connect together

to form networks to transmit

data (ACTDIK014)

Examine how whole

numbers are used to

represent all data in digital

systems (ACTDIK015)

Acquire, store and validate

different types of data, and

use a range of software to

interpret and visualise data

to create information

(ACTDIP016)

Define problems in terms

of data and functional

requirements drawing on

previously solved problems

(ACTDIP017)

Design a user interface for a

digital system (ACTDIP018)

Design, modify and follow

simple algorithms involving

sequences of steps,

branching, and iteration

(repetition) (ACTDIP019)

Implement digital solutions

as simple visual programs

involving branching,

iteration (repetition), and

user input (ACTDIP020)

Explain how student

solutions and existing

information systems are

sustainable and meet

current and future local

community needs

(ACTDIP021)

Plan, create and

communicate ideas and

information, including

collaboratively online,

applying agreed ethical,

social and technical

protocols (ACTDIP022)

Sequence of Lessons / Unit

Approx.

time

rq’d

(hrs)

Year

5or 6
CD

Achievement

standard #
CD

Achievement

standard #
CD

Achievement

standard #
CD

Achievement

standard #
CD

Achievement

standard #
CD

Achievement

standard #
CD

Achievement

standard #
CD

Achievement

standard #
CD

Achievement

standard #

Problem-solving processes 16 hrs A

3

4

4

5

Levels 3 and 4 Achievement Standard
Levels 5 and 6 Achievement Standard

The numbering of the Achievement Standards below is reflected in the grid above to show coverage
across the 8 units.

Levels 7 and 8 Achievement Standard

By the end of Year 4

 Students describe how a range of digital systems (hardware and software) and their
peripheral devices can be used for different purposes

 They explain how the same data sets can be represented in different ways.

 Students define simple problems, design and implement digital solutions using
algorithms that involve decision-making and user input.

 They explain how the solutions meet their purposes.

 They collect and manipulate different data when creating information and digital
solutions.

 They safely use and manage information systems for identified needs using agreed
protocols and describe how information systems are used.

By the end of Year 6:

 Students explain the fundamentals of digital system components (hardware, software and networks) and
how digital systems are connected to form networks. (1)

 They explain how digital systems use whole numbers as a basis for representing a variety of data types.
(2)

 Students define problems in terms of data and functional requirements and design solutions by
developing algorithms to address the problems. (3)

 They incorporate decision-making, repetition and user interface design into their designs and implement
their digital solutions, including a visual program. (4)

 They explain how information systems and their solutions meet needs and consider sustainability. (5)

 Students manage the creation and communication of ideas and information in collaborative digital
projects using validated data and agreed protocols. (6)

By the end of Year 8

 Students distinguish between different types of networks and defined purposes.

 They explain how text, image and audio data can be represented, secured and presented in
digital systems.

 Students plan and manage digital projects to create interactive information.

 They define and decompose problems in terms of functional requirements and constraints.

 Students design user experiences and algorithms incorporating branching and iterations, and
test, modify and implement digital solutions.

 They evaluate information systems and their solutions in terms of meeting needs, innovation
and sustainability.

 They analyse and evaluate data from a range of sources to model and create solutions.

 They use appropriate protocols when communicating and collaborating online.

https://creativecommons.org/licenses/by-nc-sa/3.0/au/

Digital Technologies – 5 and 6_

Mapping template © Victorian Curriculum and Assessment Authority (VCAA). Creative Commons BY-NC-SA 3.0 AU.

Page 2

Problem-solving processes

Year Level 5 TOPIC Creating a digital solution Time: 16 HOURS

When students are set the task of solving a problem that requires a digital solution, they usually start by investigating and defining the problem. They draw on

computational thinking, a problem-solving approach that involves activities such as organising data logically, breaking down problems into components, and designing

and using algorithms and models to show how the solution will be developed and how it will appear. As part of designing their solution, students generate ideas and

consider the user of their digital system. During the producing and implementing process students typically create their own solution using a visual programming

language. Once a digital solution has been created it is important to evaluate it against relevant criteria, such as: Did it entertain the users (if a game)? Can updated

data be added so the solution can be used in the future? (Future needs). Note: Sometimes when students are creating digital solutions they might return to a process

they have already completed in order to make adjustments; however, typically at this level, students engage in each of these processes in the above-mentioned order.

Programming is the way we communicate algorithms to a digital system, such as a laptop or notebook, so that the system understands the instructions. Digital systems

need precise instructions as they are unable to understand instructions that include superfluous details. We use programming languages to code the instructions.

There are many different visual programming languages but all have common programming statements and use a common approach to creating a program and

running it to see if it works as intended.

Flow of activities

Short text
Define the task
Analyse the problem and identify the functional
requirements of the solution.

Design a digital solution
Represent how the solution will be created and what
the solution will look like

Visual programming solution
Use a visual programming language to implement a
digital solution.

Evaluation
Evaluate the level to which the solution met the needs
of the target audience or its intended purpose.

Question to guide
exploration

What is the problem?

How should the digital solution work and what
should it look like?

How do I transform my design into a working
solution?

Did the solution solve the problem?

AC Alignment Investigating and defining (ACTDIP017) Generating and designing (ACTDIP019) Producing and Implementing (ACTDIP020) Evaluating (ACTDIP021)

What is this about? Clearly defining a problem is a crucial step in developing a
software solution to a problem.

This is the process students undertake when they analyse
the problem and identify the functional requirements of
the solution. Students determine what the solution has to
do to solve the problem (eg accurately count the number
of guesses before the next question appears or calculate
the distance travelled by a robot). Defining the problem
involves identifying the ‘pieces of the jigsaw’: the main
elements or components of the problem, and the data
needed to better understand or solve the problem.
Defining involves stating what would solve the problem,
not how to solve the problem.

When the question ‘What is the problem?’ is answered,
the process moves to how the problem will be solved. The
solution is found. Then algorithms are designed to
represent a complete, logically structured set of
instructions that are needed to solve the problem.

Students examine existing digital solutions to identify
features that may be transferable to new but similar digital
solutions.

Designing involves representing how the solution will
be created and what the solution will look like (user
interface). It is the ‘how’ process.

An algorithm is a step-by-step process or series of
instructions to achieve a particular outcome. It is used
to show how the solution will function – it is the rules,
the sequence and decisions.

Algorithms can be written as a series of steps or drawn
as a flow chart. Creating an algorithm is an integral part
of computational thinking and of creating a program to
instruct a computer or robotic device. Computational
thinking helps break down a complex task into smaller
chunks. Looking for patterns in the algorithm helps us
work out opportunities to use loops where code is
repeated.

A paper prototype can be used to map out design ideas;
for example, what is on screen, the logic behind
transitioning between screens and how various
elements work together as a system. The paper
prototype can inform algorithm development.

Once the algorithms have been completed they are
converted into a program, so that those instructions
can be executed by the digital system. At this level,
students use a visual programming language.

A visual programming language enables students to
sequence commands (displayed as blocks) to create a
program (or digital solution). This could be a simple task
of animating a character (sprite) in a story; or it could
be creating complex programs to model a real-world
application.

In programming languages, decisions (branching) are
implemented using if/then or if/then, else statements.
Repetition is implemented using loop statements.

As students form their sequential blocks, they can
introduce the repeat/loop block to avoid repetition in
code as a more advanced aspect of sequences. For
example, instead of putting the same single blocks one
after the other, we can wrap an iteration (repeat/loop)
block around blocks they would like to repeat, to tell
the computer to execute the code a certain number of
times. Repeat loop blocks allow us to set a value to
control how many times the loop is executed. For
example, when creating a quiz, the questions are
repeated until the correct response is given.

User input is a way the user interacts with the
computer program. For example, a user might click on a
sprite or avatar in a game or animation to make it react
in some way, or they could enter their name or a quiz
answer when prompted. When we think of input and
output, we can characterise the images on the screen
and sound as output. Input is anything that provides
some information to our program – such as a click of
the mouse or entered text, which in turn will activate or
modify a process.

Evaluation takes places at two levels. The ‘micro’ level
is where students judge if the solution they created met
the functional requirements identified in the defining
process. The ‘macro’ level, which takes a broader view,
asks students to consider how their and existing
solutions used in information systems, such as a library
borrowing system, would be judged on the basis of
being sustainable and able to meet the current and
future needs of a community.

Sustainability includes factors such as the energy levels
required to operate the solution and other resources
used such as paper for printed output. Future needs
could include whether new data, such as new library
books and DVDs, could be used in the solution.

Evaluating draws on systems thinking where students
need to consider how the outputs (solution) meet and
affect the users.

The focus of the learning
(in simple terms)

Model how to define a problem. First, take a familiar
problem or one that students have an interest in. Next,

Provide opportunities for students to design, modify
and follow simple algorithms. Share the algorithms and

Use Scratch, Tynker, Snap or other similar visual
programming language to develop a quiz, interactive

Use sustainability criteria to explain how well students'
solutions meet requirements; for example, the solution

https://creativecommons.org/licenses/by-nc-sa/3.0/au/

Digital Technologies – 5 and 6_

Mapping template © Victorian Curriculum and Assessment Authority (VCAA). Creative Commons BY-NC-SA 3.0 AU.

Page 3

brainstorm as a class what is known. For example, ‘You
want to share digital photographs safely online with your
friends’.

Some things that may come up in brainstorming include:

 that photos are taken and stored on a smart
device

 how the photos are shared (what type of platform
or process is used)

 how people receiving the photo know it is safe to
download to their device

 what file size is acceptable

 whether the user can comment on the photo, and
if so how

 what user data is needed to send the image

 how users are notified

 whether a photo can be tagged

 whether a photo can be edited before being sent

 whether users need a profile; and if so how they
can remain safe online.

Brainstorm a list of ideas for problems that require
students to create a digital solution. Use these problems as
a focus of designing, implementing and evaluating the
solution. Students could use mindmaps to identify the
elements of each problem and then show the connections
between each element – this will help them to group
common factors.

discuss how the decisions (branching) and repeat
instructions (iteration) are represented in flow charts or
written as simple steps.

For students less familiar with designing an algorithm
perhaps start with an algorithm that has some missing
steps, too many repeated steps or steps out of order.
The task is to debug the algorithm to make it work.
Share revised algorithms.

Present the challenge of taking a familiar task, for
example cooking a hard-boiled egg, and writing it as a
series of steps with or without drawings. Use a think-
pair-share strategy to combine ideas to make a group-
designed algorithm. This task could be extended by
adding decisions to allow for choice (such as the ways it
is cooked: fried, poached or scrambled). What steps are
common? A flow chart is a relevant way to present the
algorithms.

Discuss the list of problems developed as part of a class
brainstorm or set a problem that suits your class
context. Set the task of designing an algorithm to solve
a particular problem of interest. Ask students to
develop a paper prototype and share with others to
gain feedback.

For the user input aspect, students could compare the
user interface of familiar apps or games and identify the
features that contribute to ‘good design’, such as easy
navigation, appropriate size of icons, attractive colours
and interesting and appropriate graphics.

At this level, students begin to generate different
design ideas before selecting the one that best allows
the problem to be solved. Once the preferred idea has
been chosen it is fully developed as an algorithm and a
layout diagram of the user interface is created.

story or to simulate a real world application. Ensure
that the design phase includes algorithm development
and consideration of user input. Students evaluate their
implemented design.

Provide students with an existing program created in a
visual programming language that has the option for
remix; for example, a Scratch project. Students can
modify the program to meet a similar need.

Use a turtle-based program such as Pencil Code to
create and draw geometric shapes and designs.
Integrate mathematics geometry with the programming
of geometrical shapes. Concepts such as angles, and
properties of 2D shapes, directions and Cartesian
planes, can be investigated.

Use the BBC Micro:bit emulator to program. Use a
visual programming language or a relevant app to
control a robotic device such as Sphero, Dash and Dot,
Edison, mBot, Lego EV3 or a mini-drone.

Set up challenges that require students to design and
implement program solutions. Sphero can be used as
the movement source for many open-ended challenges.

can only be viewed on screen to avoid printing
(environmental). Students could write their criteria in
the form of questions and focus on one factor
contributing to sustainability. Factors could be
economic, environmental or social. Economic factors
include the cost of producing or running the solution.
Environmental factors are the resources needed to use
the solution. Social factors could include fairness of
rules and accessibility to specific audiences.

Students’ solutions may incorporate icons or buttons or
simple forms of navigation to improve user experience.
Ask students to evaluate the use of these approaches
where applicable.

Supporting resources and
tools and how to use them

Learning environments
This lesson sets up the problem of creating the most
suitable conditions for learning.

Check out the checkout
This lesson sets up an approach to model how a checkout
works.

Learning to loop
Students create algorithms with a condition that tells
the computer to repeat a sequence of instructions.

Making maths quizzes 1: Plan and test our programs
This lesson sequence provides guidance on how to
design an algorithm. The context is a maths quiz that
gets harder or easier depending on user performance.

Eco-calculator
This lesson sequence provides guidance on how to
design an algorithm. The context is making a paper
prototype of an eco-calculator to demonstrate human
impact on the environment and to suggest changes in
behaviour.

Course C
This Code.org course is an introduction to creating
programs with loops, events and conditionals.

Scratch tutorials
Follow these tutorials to get started with your project.

Swift Playgrounds
This is a free iPad app that students can use to learn
programming.

Design a flag with Pencil Code
Create a step-by-step process (algorithm) to program
your flag design after exploring a ‘block-based’ turtle
drawing program such as Pencil Code.

Making maths quizzes 2: Implementing a digital
solution
In this sequence of lessons students implement a digital
solution for a maths quiz. They test and assess how well
it works.

BBC Micro:bit code maker

Software evaluation checklist
Students could select some checklist points for their
solutions and convert them into questions to assist with
evaluation.

https://creativecommons.org/licenses/by-nc-sa/3.0/au/
https://www.digitaltechnologieshub.edu.au/teachers/lesson-ideas/learning-environments
https://www.digitaltechnologieshub.edu.au/teachers/lesson-ideas/check-out-the-checkout
https://www.digitaltechnologieshub.edu.au/teachers/lesson-ideas/integrating-digital-technologies/learning-to-loop
https://www.digitaltechnologieshub.edu.au/teachers/lesson-ideas/making-maths-quizzes-1
https://www.digitaltechnologieshub.edu.au/teachers/lesson-ideas/eco-calculator
https://studio.code.org/s/coursec
https://scratch.mit.edu/help/videos/
https://scratch.mit.edu/help/videos/
https://www.digitaltechnologieshub.edu.au/resourcedetail?id=2b224498-09f9-6792-a599-ff0000f327dd
https://www.digitaltechnologieshub.edu.au/teachers/lesson-ideas/integrating-digital-technologies/design-a-flag-with-pencil-code
https://www.digitaltechnologieshub.edu.au/teachers/lesson-ideas/making-maths-quizzes-2
https://www.digitaltechnologieshub.edu.au/teachers/lesson-ideas/making-maths-quizzes-2
https://makecode.microbit.org/
https://checklist.com/software-evaluation-checklist/

Digital Technologies – 5 and 6_

Mapping template © Victorian Curriculum and Assessment Authority (VCAA). Creative Commons BY-NC-SA 3.0 AU.

Page 4

This online editor makes it easy to program your
Micro:bit in Blocks. You don’t even need a Micro:bit.

DT Challenge: 5/6 Blockly – Chatbot
Set up a login for students to learn about user input.
As they complete the modules students write brief
programs that prompt the user for input, store it in a
variable and then print it – often in combination with
some other text, such as a greeting.

Sphero: Catch me if you can
This is a good introduction to Sphero with challenges
and tasks for students to develop an understanding of
ways to control Sphero through programming. There
are apps to control Sphero; Sphero Edu is
recommended.

Assessment

Assessment task examples

 Mindmap showing the key components of the
problem

 List of data needed to solve the problem

 List of the functional requirements of the solution

Achievement standard

Define problems in terms of data and functional requirements and

design solutions by developing algorithms to address the

problems.

Assessment task examples

 Use a flow chart to design an algorithm to process
user input into a simple maze game.

 Use a flow chart to design an algorithm that
includes branching and iteration.

 Use a repeat loop block in a visual programming
language to demonstrate understanding of
branching and iteration. (Write an algorithm for a
game that uses repetition.)

Achievement standard

Define problems in terms of data and functional requirements

and design solutions by developing algorithms to address

the problems.

Incorporate decision-making, repetition and user interface

design into their designs and implement their digital solutions,

including a visual program

Assessment task
Modify an existing game or quiz:

 to suit learners of a different age group

 to make it more fun.

Dr Scratch is a free online analytical tool that provides
feedback on Scratch (MIT) project progress.

Achievement standard

Incorporate decision-making, repetition and user interface

design into their designs and implement their digital

solutions, including a visual program.

Assessment task examples
Write three evaluation questions about an existing
game, such as:

 Are the rules easy to understand?

 Are the rules fair?

 Can you change an answer or action easily?

For an information system used in the local community,
such as a directory kiosk in a shopping centre or a
supermarket check-out system, list three functions or
pieces of information that it currently performs or
shows. Then list three changes that would need to be
made so that it can perform or show an element in one
year’s time; for example, a new price for a product or
the removal of a store.

Achievement standard

They explain how information systems and their solutions
meet needs and consider sustainability

https://creativecommons.org/licenses/by-nc-sa/3.0/au/
https://aca.edu.au/challenges/56-blockly.html
https://csermoocs.adelaide.edu.au/library/CatchMeIfYouCan.pdf
https://www.digitaltechnologieshub.edu.au/teachers/assessment/dr-scratch

