
Digital Technologies – 7 and 8_ Creating digital solutions

Mapping template © Victorian Curriculum and Assessment Authority (VCAA). Creative Commons BY-NC-SA 3.0 AU.

 Strand Knowledge and understanding
Processes and production skills

Digital

systems

Representation

of data

Collecting,

managing and

analysing data

Creating digital solutions by:

Investigating

and defining

Generating

and designing

Producing

and implementing

 Evaluating

Collaborating

and managing

Content

Description

Investigate how data

is transmitted and

secured in wired,

wireless and mobile

networks, and how

the specifications

affect performance

(ACTDIK023)

Investigate how

digital systems

represent text, image

and audio data in

binary (ACTDIK024)

Acquire data from a

range of sources and

evaluate

authenticity,

accuracy and

timeliness

(ACTDIP025)

Analyse and visualise

data using a range of

software to create

information, and use

structured data to

model objects or

events (ACTDIP026)

Define and

decompose real-

world problems

taking into account

functional

requirements and

economic,

environmental,

social, technical and

usability constraints

(ACTDIP027)

Design the user

experience of a

digital system,

generating,

evaluating and

communicating

alternative designs

(ACTDIP028)

Design algorithms

represented

diagrammatically and

in English, and trace

algorithms to predict

output for a given

input and to identify

errors (ACTDIP029)

Implement and

modify programs

with user interfaces

involving branching,

iteration and

functions in a

general-purpose

programming

language

(ACTDIP030)

Evaluate how

student solutions and

existing information

systems meet needs,

are innovative, and

take account of

future risks and

sustainability

(ACTDIP031)

Plan and manage

projects that create

and communicate

ideas and

information

collaboratively

online, taking safety

and social contexts

into account

(ACTDIP032)

Sequence of Lessons / Unit

Approx.

time

rq’d

Year A

or B
CD

Achievement

standard #
CD

Achievement

standard #
CD

Achievement

standard #
CD

Achievement

standard #
CD

Achievement

standard #
CD

Achievement

standard #
CD

Achievement

standard #
CD

Achievement

standard #
CD

Achievement

standard #
CD

Achievement

standard #

Create an app or a game 16 7 4 5 5 5 6

Years 5 and 6 Achievement Standard

Years 7 and 8 Achievement Standard Years 9 and 10 Achievement Standard

By the end of Year 6:

 Students explain the fundamentals of digital system components (hardware, software
and networks) and how digital systems are connected to form networks.

 They explain how digital systems use whole numbers as a basis for representing a
variety of data types.

 Students define problems in terms of data and functional requirements and design
solutions by developing algorithms to address the problems.

 They incorporate decision-making, repetition and user interface design into their
designs and implement their digital solutions, including a visual program.

 They explain how information systems and their solutions meet needs and consider
sustainability.

 Students manage the creation and communication of ideas and information in
collaborative digital projects using validated data and agreed protocols.

By the end of Year 8

 Students distinguish between different types of networks and defined purposes. (1)

 They explain how text, image and audio data can be represented, secured and presented in digital systems.
(2)

 Students plan and manage digital projects to create interactive information. (3)

 They define and decompose problems in terms of functional requirements and constraints. (4)

 Students design user experiences and algorithms incorporating branching and iterations, and test, modify
and implement digital solutions. (5)

 They evaluate information systems and their solutions in terms of meeting needs, innovation and
sustainability. (6)

 They analyse and evaluate data from a range of sources to model and create solutions. (7)

 They use appropriate protocols when communicating and collaborating online. (8)

By the end of Year 10

 Students explain the control and management of networked digital systems and the security
implications of the interaction between hardware, software and users.

 They explain simple data compression, and why content data are separated from
presentation.

 Students plan and manage digital projects using an iterative approach.

 They define and decompose complex problems in terms of functional and non-functional
requirements.

 Students design and evaluate user experiences and algorithms.

 They design and implement modular programs, including an object-oriented program, using
algorithms and data structures involving modular functions that reflect the relationships of
real-world data and data entities.

 They take account of privacy and security requirements when selecting and validating data.
Students test and predict results and implement digital solutions.

 They evaluate information systems and their solutions in terms of risk, sustainability and
potential for innovation and enterprise.

 They share and collaborate online, establishing protocols for the use, transmission and
maintenance of data and projects.

Create an app or a game
Use the context of apps and digital games development to build students’ capabilities and confidence in creating a digital solution that uses a general-purpose (text based/scripting) programming that allows for choices (branching) and repetition (iteration). There is a

https://creativecommons.org/licenses/by-nc-sa/3.0/au/

Digital Technologies – 7 and 8_

Mapping template © Victorian Curriculum and Assessment Authority (VCAA). Creative Commons BY-NC-SA 3.0 AU.

Page 2

wide range of interactive online tutorials that students could work through to learn and practise coding for a particular programming language, such as Python and Ruby. Once students have determined the purpose and requirements of the game, they describe how the
solution will be created and consider design features appropriate to the audience. After the game has been developed, students evaluate its success.

Flow of activities

Short text Examine existing digital solutions

Consider the user when defining a problem and identifying the

functional requirements.

Designing a solution

Use their functional requirements as the basis for

developing an algorithm and the user interface.

Programming a solution

Use a relevant programming language to implement

their digital solution.

Evaluate

Evaluate their digital solution against design criteria

and user needs.

Questions to guide

exploration

Who’s the game for and what’s its purpose?

How can I represent my design of the solution?

How can I code my solution?

Have I met the user’s needs?

AC Alignment Investigating and defining (ACTDIP027)

Generating and designing (ACTDIP028) / (ACTDIP029)

Producing and implementing (ACTDIP030)

Evaluating (ACTDIP031)

What’s this about?

It is very important to clearly state the intention of the game,

namely what it is required to do (functional requirements) as well

as identify if there are any constraints or factors that should

influence the nature of the game or how it is developed. An

important aspect of this process is developing empathy for the

user. What possible constraints (usability) might the user have? Are

there any accessibility needs such as having both sound and images

to indicate an action (social constraint)? Are there any technical

constraints such as a game requiring a specific input device to issue

instructions such as a 3D mouse or a Gamepad (technical

constraint)? Also user preference is important in this process, for

example the users might prefer touch screen over device inputs.

At this level students are required to decompose a problem. For

example for an adventure game it could mean identifying for each

character their characteristics, actions, settings and sequences.

Decomposition is about isolating the key elements and then teasing

out features of each. This allows identification of patterns,

relationships and anomalies.

Once these aspects are understood, the process then moves on the

identification and design of algorithms that represent a complete,

logically structured set of instructions that are needed to solve the

problem as well as factors contributing to user experience.

Examining existing digital solutions enable students to identify

features that may be transferable to new but similar digital

solutions.

Look for cross-curricula opportunities when designing an app. For

An algorithm is a logical step-by-step process for

stating how to create a digital solution. Algorithms

are generally written as a flowchart or in

pseudocode. Note: There is not an expectation that

both algorithm techniques are used when designing

one solution.

A flow chart is a common way to visually represent

an algorithm. Another relevant approach particular

for games and apps is to do a storyboard which

often focuses on the onscreen actions.

Pseudocode is a way of describing a set of

instructions that does not have to use specific

syntax. At the level students use structured English

to express these instructions, for example using

‘while’ and ‘endwhile’ when describing a ‘while

loop’.

When designing how the solution is created

students need to refer back to any constraints

identified when defining the problem, such as social

and technical ones. The design of the user interface

(drawing on design principles such as contrast,

space and balance, and repetition) and

consideration of these constraints is referred to as

user experience.

It can be expected that students at this level may be

transitioning from block-based visual programming

languages to general-purpose (text-based) languages.

Note: General-purposes languages allow students to

solve more complex problems as they are not restricted

by the functionality of visual programming languages.

Some block-based visual programming languages such

as the app Tynker, provide the equivalent programming

instructions in a text-based language.

Python and Java are programming languages commonly

used in schools.

At this level, students begin to test their solutions and

make changes to the program if needed. It is a good

idea for students to plan what tests they will conduct

before they start coding (expected/actual results). For

example, students might test if the allowed number of

repeated actions in their game is the same as they

planned or if a navigation path takes them to the

destination stated in the design.

The process of evaluating involves judging if the digital

game met its purpose. Evaluating involves using criteria

to make that judgement, and at this level, students can

determine the value of their game/app based on

criteria related to one or more of the following: the

stated requirements, innovativeness, sustainability and

risks. For example, students might evaluate their games

on:

 how well they meet user needs

 how innovative their solutions are compared
to existing games

 how sustainable their solution will be for
different users, purposes, and technology
improvements

 if there were any social/ethical risks with their
games such as exclusion, bullying, links to
inappropriate websites.

https://creativecommons.org/licenses/by-nc-sa/3.0/au/

Digital Technologies – 7 and 8_

Mapping template © Victorian Curriculum and Assessment Authority (VCAA). Creative Commons BY-NC-SA 3.0 AU.

Page 3

example, make links to History: What would a smartphone contain

from someone in ancient times? [contacts, maps, notes, SMS,

photos etc]

The focus of the learning (in

simple terms)

Students can begin this process by researching and reviewing a

range of existing games or apps:

 For game design: see what makes them fun to play and
identify elements that are less engaging.

 For Mobile Apps: Look for common element such as:
Login-ins, Welcome page, Navigation, Graphic user
interface.

As a result of their investigation students identify features that may

be of use in their digital solution. Model ways to record ideas such

as sticky notes, a checklist or table to record details of their game

or app research.

Set the task of identifying what a digital game or mobile app for a

particular audience needs to do (functional requirement). For

example:

 Digital game: a word game that rewards the selection of
the correct word or a maths game that rewards selection
of a particular shape. A more complex requirement is a
game that allows multiple users to work with multiple
options.

 Mobile app: a school map that shows the location of
buildings and rooms with a navigation path.

Using an organisation chart template such as Smart Art or a

mindmap students can break the problem down into sub elements

for example in game design show the relationship between

characters, movements, collisions and scoring.

Students should identify at least one constraint on the solution and

investigate how that constraint is handled with existing games or

apps.

Use different approaches to organise collaborative groups so

students have to work with a diverse range of students with

different skills, abilities and backgrounds. Implement strategies to

help students work effectively. Support and guide students with

the planning and project management.

Students use their functional requirements as the

basis for developing an algorithm and the user

interface.

At this level, students generate two or three

different design ideas (ideas as to how the

game/app will operate and look). These are just

broad ideas with not a lot of detail. This process

draws on creative thinking skills (Critical and

Creative Thinking general capability) and students

use their functional requirements to judge what

idea best meets these requirements.

This might involve students undertaking interviews

of the target audience to support the user-centred

design process. They may offer screen options or

initial design ideas to gauge what users like and

dislike. This helps students select the best design

idea for further development.

A paper prototype can be used in the design process

to map out ideas for example what’s on screen, the

logic behind transitioning between screens and how

various elements may work together as a system.

The paper prototype can inform algorithm

development.

Use the algorithm to identify parts of the program

that involve branching (where decisions by the user

are enabled), iteration (where loops and repeat

functions have reduced the script length and detail)

and other functions that might have been

suggested for example the use of variables.

Students describe their algorithmic steps to others,

and have other students interpret their algorithms

and give feedback to improve accuracy and clarity

of their instructions. Raising questions about the

Students could explore similarities/differences and

discuss the advantages/disadvantages of both

categories of programming languages (visual/text).

Students could undertake various online courses and

modules to increase and further develop their

programing skills and knowledge.

For students transitioning between visual and text-

based programming provide an opportunity to create a

game using Scratch, Pyonkee, Tynker or similar

programming language.

Once familiar with a range of coding commands and

ways to manipulate data, students could implement

their game or mobile app design to meet their particular

purpose and audience. Students should test some

limited features of their solutions to make any changes,

if needed. They might like to pair with a student and

each complete one test of their partner’s solution.

Students evaluate their solutions on the basis of how

well they meet user needs, how innovative their

solution is compared to existing solutions, and how

sustainable their solution will be for different users,

purposes, and technology improvements. It is often

easier for students to frame these criteria as questions.

This guides their evaluation and also focuses attention

quite specifically on the functional requirements. For

example:

 Was it easy to log on to the app?
 Could you change an action if you made a

mistake?
 Is an action shown as an image as well as a

noise? For example, clapping when a score
was shown onscreen.

 Are answers/responses displayed on the
screen quickly enough?

 Are the button/icons big enough so you can
easily select the correct target?

 Was there something different about this
game/app that you had never seen before?

https://creativecommons.org/licenses/by-nc-sa/3.0/au/

Digital Technologies – 7 and 8_

Mapping template © Victorian Curriculum and Assessment Authority (VCAA). Creative Commons BY-NC-SA 3.0 AU.

Page 4

sequence helps students articulate their

programing intentions.

Supporting resources and

tools and purpose/ context

for use.

Invent a Game!

This lesson is a transition lesson from coding using a visual

programming language to a general-purpose programming

language. It provides useful guidance around functions. This game

uses the robotic device Sphero and a Sphero App.

Game design

This sequence of lessons integrates game design using scratch and

a Makey Makey programming board. (Note this partially meets the

programming achievement standard; to fully meet the standard

would need to program using general-purpose programming

language.)

Designing an algorithm

This resource provides a simple explanation and

example of Pseudocode.

Flow chart software Gliffy

Storyboard generator

Use this free software to generate storyboards for

game or app design.

Lesson 2: The Need for Algorithms

Students are presented with a "Human Machine

Language" that includes 5-commands and then

must figure out how to use these primitive

commands to “program” the same algorithm.

Functions

A good resource to explain functions needed

Lesson 8: Creating Functions with Parameters

Students learn that writing functions with

parameters can generalize solutions to problems

even further.

Mockflow

Wireframe user interface design tool.

Rapid Prototyping Studio

A range of ideas for prototyping

Learning to code:

Learn to Code 3

Help students expand the coding skills to start thinking

more like an app developer. The guide supports

teachers to guide their students to code in Swift

Playgrounds through unplugged activities and practice

with the Swift Playgrounds app.

Grok learning resources

Grok provides online interactive programming courses

for individuals or classrooms.

Codecademy

This site provides tutorials on web design tools.

Coding Ground

Various text based programming languages with online

development environments for students to explore and

compare with block based languages.

Coding bat

This site provides a range of exercises to practice coding

and to build coding confidence in Java and Python.

Swift Playgrounds

Swift Playgrounds is a free iPad app from Apple that

makes learning and experimenting with code

interactive.

Lesson ideas:

DT Challenge 7/8 Python – Chatbot

Write programs to solve problems with code and create

word games.

Evaluating the Product

Template for product evaluation.

https://creativecommons.org/licenses/by-nc-sa/3.0/au/
https://goo.gl/DGtmwQ
https://www.digitaltechnologieshub.edu.au/teachers/lesson-ideas/game-design
http://www.bbc.co.uk/education/guides/z3bq7ty/revision/2
https://www.gliffy.com/products/online/
http://generator.acmi.net.au/storyboard
https://curriculum.code.org/csp/unit3/2/
https://curriculum.code.org/csp/unit3/8/
https://mockflow.com/
http://www.jeremyfriedland.com/portfolio/prototype.php
https://www.digitaltechnologieshub.edu.au/resourcedetail?id=ea494698-09f9-6792-a599-ff0000f327dd
https://www.digitaltechnologieshub.edu.au/resourcedetail?id=34ed4198-09f9-6792-a599-ff0000f327dd
https://www.digitaltechnologieshub.edu.au/resourcedetail?id=ac6a4098-09f9-6792-a599-ff0000f327dd
https://www.tutorialspoint.com/codingground.htm
https://www.digitaltechnologieshub.edu.au/resourcedetail?id=bb6a4098-09f9-6792-a599-ff0000f327dd
https://www.digitaltechnologieshub.edu.au/resourcedetail?id=2b224498-09f9-6792-a599-ff0000f327dd
https://aca.edu.au/challenges/78-python.html
http://www.technologystudent.com/despro_flsh/evalprod1.html

Digital Technologies – 7 and 8_

Mapping template © Victorian Curriculum and Assessment Authority (VCAA). Creative Commons BY-NC-SA 3.0 AU.

Page 5

Tools to create mobile apps:

AppLab

Students can create apps and switch between block

(visual) and text based programming.

MIT App Inventor

Students can create apps and test these on mobile

devices.

Assessment

Suggested approaches may include:

One constraint on the solution.

List of two or three functional requirements of the solution.

Achievement standard

Define and decompose problems in terms of functional requirements

and constraints.

Suggested approaches may include:

Two design ideas

One example of each of branching and iteration in

the algorithm (diagrammatic or structured English)

Achievement standard

Design user experiences and algorithms incorporating

branching and iterations, and test, modify and

implement digital solutions.

Suggested approaches may include:

,

A mini report (table/verbal/digital) for two tests

outlining:

 What is being tested in the solution

 What are the expected results

 What were the actual results

 What changes were made, if needed

Achievement standard

Design user experiences and algorithms incorporating

branching and iterations, and test, modify and implement

digital solutions

Approach with a one-line prompt

Suggested approaches may include:

Demonstration of solution to a small group of students

who rate key features on a scale.

Demonstration of solution to a small group of students

who each identify one feature that they thought was

innovative or interesting.

In pairs each student uses each other’s solution and

answers three evaluation questions.

Each student explains how their solution met one

functional requirement and one constraint.

Achievement standard

Evaluate information systems and their solutions in terms of

meeting needs, innovation and sustainability.

https://creativecommons.org/licenses/by-nc-sa/3.0/au/
https://code.org/educate/applab
http://ai2.appinventor.mit.edu/

