Digital Technologies – 7 and 8_ Creating digital solutions

	Strand			Knowledge and	lunders	tanding								Processes and p	oroduc	tion skills								
														Ст	reating	digital solutions b	y:							
				Digital	Rep	presentation	c	Collecting,																
				systems		of data	ma	inaging and		Invest	gating			Gene	rating		F	Producing	Eva	luating	Collabora	ating		
							analysing data		and defining		and designing			and implementing				and mana	aging					
			Investi	igate how data	Investig	ate how	Acquire	e data from a	Analys	se and visualise	Define	and	Desigr	n the user	Desig	n algorithms	Implem	nent and	Evaluat	e how	Plan and man	nage		
			is trans	smitted and	digital s	ystems	range o	of sources and	data u	ising a range of	decom	oose real-	experi	ience of a	repre	esented	modify	programs	student	solutions and	projects that	create		
			secure	d in wired,	represe	nt text, image	evaluat	e	softwa	are to create	world p	oroblems	digital	l system,	diagr	ammatically and	with us	er interfaces	existing	information	and communi	icate		
			wireles	ss and mobile	and aud	lio data in	authen	ticity,	inform	nation, and use	taking i	nto account	genera	ating,	in En	glish, and trace	involvir	ng branching,	systems	s meet needs,	ideas and			
	Content Description		netwo	rks, and how	binary (ACTDIK024)	accurac	cy and	struct	ured data to	functio	nal	evalua	ating and	algor	ithms to predict	iteratio	on and	are inno	ovative, and	information			
					the spe	ecifications			timeline	ess	model	l objects or	require	ments and	comm	nunicating	outpu	ut for a given	functio	ns in a	take ac	count of	collaborativel	ly
			affect	performance			(ACTDI	P025)	events	s (ACTDIP026)	econon	nic,	altern	ative designs	input	and to identify	genera	l-purpose	future r	isks and	online, taking	g safety		
			(ACTDI	IK023)							enviror	imental,	(ACTD	0IP028)	error	s (ACTDIP029)	progra	mming	sustaina	ability	and social cor	ntexts		
											social, t	echnical and					langua	ge	(ACTDIF	9031)	into account			
											usabilit	y constraints					(ACTDI	P030)			(ACTDIP032)			
											(ACTDI	P027)												
	Approx.	Year A		Achievement		Achievement		Achievement		Achievement		Achievement		Achievement		Achievement		Achievement		Achievement	Achiev	vement		
Sequence of Lessons / Unit	time	or B	CD	standard #	CD	standard #	CD	standard #	CD	standard #	CD	standard #	CD	standard #	CD	standard #	CD	standard #	CD	standard #	CD	dard #		
	rq'd		_		_		_		_		-										-			
Create an app or a game	16	7										4	V	5		5	V	5	V	6				

Years 5 and 6 Achievement Standard	Years 7 and 8 Achievement Standard	Years 9 and 10 Achievem
 By the end of Year 6: Students explain the fundamentals of digital system components (hardware, software and networks) and how digital systems are connected to form networks. They explain how digital systems use whole numbers as a basis for representing a variety of data types. Students define problems in terms of data and functional requirements and design solutions by developing algorithms to address the problems. They incorporate decision-making, repetition and user interface design into their designs and implement their digital solutions, including a visual program. They explain how information systems and their solutions meet needs and consider sustainability. Students manage the creation and communication of ideas and information in collaborative digital projects using validated data and agreed protocols. 	 By the end of Year 8 Students distinguish between different types of networks and defined purposes. (1) They explain how text, image and audio data can be represented, secured and presented in digital systems. (2) Students plan and manage digital projects to create interactive information. (3) They define and decompose problems in terms of functional requirements and constraints. (4) Students design user experiences and algorithms incorporating branching and iterations, and test, modify and implement digital solutions. (5) They evaluate information systems and their solutions in terms of meeting needs, innovation and sustainability. (6) They analyse and evaluate data from a range of sources to model and create solutions. (7) They use appropriate protocols when communicating and collaborating online. (8) 	 By the end of Year 10 Students explain the implications of the They explain simplication. Students plan and the implication. Students plan and the implication. They define and date requirements. Students design and implication and the implication. They design and implication and the implication. They design and implication and the implication. They take account implication. They take account implication. They take account implication. They evaluate inforpotential for innoval. They share and comparison.

Use the context of apps and digital games development to build students' capabilities and confidence in creating a digital solution that uses a general-purpose (text based/scripting) programming that allows for choices (branching) and repetition (iteration). There is a

ement Standard

the control and management of networked digital systems and the security the interaction between hardware, software and users.

simple data compression, and why content data are separated from

nd manage digital projects using an iterative approach.

decompose complex problems in terms of functional and non-functional

and evaluate user experiences and algorithms.

l implement modular programs, including an object-oriented program, using data structures involving modular functions that reflect the relationships of and data entities.

int of privacy and security requirements when selecting and validating data. nd predict results and implement digital solutions.

nformation systems and their solutions in terms of risk, sustainability and ovation and enterprise.

collaborate online, establishing protocols for the use, transmission and data and projects.

wide range of interactive online tutorials that students could work through to learn and practise coding for a particular programming language, such as Python and Ruby. Once students have determined the purpose and requirements of the game, they describe how the solution will be created and consider design features appropriate to the audience. After the game has been developed, students evaluate its success.

	Flow of activities									
Short text	Examine existing digital solutions	Designing a solution	Programming a solution							
	Consider the user when defining a problem and identifying the	Use their functional requirements as the basis for	Use a relevant programming language to implement							
	functional requirements.	developing an algorithm and the user interface.	their digital solution.							
Questions to guide				T						
exploration	Who's the game for and what's its purpose?	How can I represent my design of the solution?	How can I code my solution?							
AC Alignment	Investigating and defining (ACTDIP027)	Generating and designing (ACTDIP028) / (ACTDIP029)	Producing and implementing (ACTDIP030)	Ī						
What's this about?	It is very important to clearly state the intention of the game,	An algorithm is a logical step-by-step process for	It can be expected that students at this level may be	T						
	namely what it is required to do (functional requirements) as well	stating how to create a digital solution. Algorithms	transitioning from block-based visual programming							
	as identify if there are any constraints or factors that should	are generally written as a flowchart or in	languages to general-purpose (text-based) languages.							
	influence the nature of the game or how it is developed. An	pseudocode. Note: There is not an expectation that	Note: General-purposes languages allow students to							
	important aspect of this process is developing empathy for the	both algorithm techniques are used when designing	solve more complex problems as they are not restricted							
	user. What possible constraints (usability) might the user have? Are	one solution.	by the functionality of visual programming languages.							
	there any accessibility needs such as having both sound and images									
	to indicate an action (social constraint)? Are there any technical	A flow chart is a common way to visually represent	Some block-based visual programming languages such							
	constraints such as a game requiring a specific input device to issue	an algorithm. Another relevant approach particular	as the app Tynker, provide the equivalent programming							
	instructions such as a 3D mouse or a Gamepad (technical	for games and apps is to do a storyboard which	instructions in a text-based language.							
	constraint)? Also user preference is important in this process, for	often focuses on the onscreen actions.								
	example the users might prefer touch screen over device inputs.		Python and Java are programming languages commonly							
		Pseudocode is a way of describing a set of	used in schools.							
	At this level students are required to decompose a problem. For	instructions that does not have to use specific								
	example for an adventure game it could mean identifying for each	syntax. At the level students use structured English	At this level, students begin to test their solutions and							
	character their characteristics, actions, settings and sequences.	to express these instructions, for example using	make changes to the program if needed. It is a good							
	Decomposition is about isolating the key elements and then teasing	'while' and 'endwhile' when describing a 'while	idea for students to plan what tests they will conduct							
	out features of each. This allows identification of patterns,	loop'.	before they start coding (expected/actual results). For							
	relationships and anomalies.		example, students might test if the allowed number of							
		When designing how the solution is created	repeated actions in their game is the same as they							
	Once these aspects are understood, the process then moves on the	students need to refer back to any constraints	planned or if a navigation path takes them to the							
	identification and design of algorithms that represent a complete,	identified when defining the problem, such as social	destination stated in the design.							
	logically structured set of instructions that are needed to solve the	and technical ones. The design of the user interface								
	problem as well as factors contributing to user experience.	(drawing on design principles such as contrast,								
		space and balance, and repetition) and								
	Examining existing digital solutions enable students to identify	consideration of these constraints is referred to as								
	features that may be transferable to new but similar digital solutions.	user experience.								
	Look for cross-curricula opportunities when designing an app. For									

Evaluate

Evaluate their digital solution against design criteria and user needs.

Have I met the user's needs?

Evaluating (ACTDIP031)

The process of evaluating involves judging if the digital game met its purpose. Evaluating involves using criteria to make that judgement, and at this level, students can determine the value of their game/app based on criteria related to one or more of the following: the stated requirements, innovativeness, sustainability and risks. For example, students might evaluate their games on:

- how well they meet user needs
- how innovative their solutions are compared to existing games
- how sustainable their solution will be for different users, purposes, and technology improvements
- if there were any social/ethical risks with their games such as exclusion, bullying, links to inappropriate websites.

	example, make links to History: What would a smartphone contain		
	from someone in ancient times? [contacts, maps, notes, SMS,		
	photos etc]		
The focus of the learning (in			
imple terms)	Students can begin this process by researching and reviewing a	Students use their functional requirements as the	Students could explore similarities/differences and
	range of existing games or apps:	basis for developing an algorithm and the user	discuss the advantages/disadvantages of both
	 For game design: see what makes them fun to play and identify elements that are less engaging. For Mobile Apps: Look for common element such as 	interface.	categories of programming languages (visual/text).
	Login-ins, Welcome page, Navigation, Graphic user interface.	At this level, students generate two or three	
	As a result of their investigation students identify features that may	different design ideas (ideas as to how the	modules to increase and further develop their
	be of use in their digital solution. Model ways to record ideas such	game/app will operate and look). These are just broad ideas with not a lot of detail. This process	programing skills and knowledge.
	as sticky notes, a checklist or table to record details of their game	draws on creative thinking skills (Critical and	For students transitioning between visual and text-
	or app research.	Creative Thinking general capability) and students	based programming provide an opportunity to create a
		use their functional requirements to judge what	game using Scratch, Pyonkee, Tynker or similar
	Set the task of identifying what a digital game or mobile app for a	idea best meets these requirements.	programming language.
	particular audience needs to do (functional requirement). For	This might involve students undertaking interviews	
	example:Digital game: a word game that rewards the selection of	of the target audience to support the user-centred	Once familiar with a range of coding commands and
	the correct word or a maths game that rewards selection of a particular shape. A more complex requirement is a	design process. They may offer screen options or	ways to manipulate data, students could implement
	game that allows multiple users to work with multiple	initial design ideas to gauge what users like and	their game or mobile app design to meet their particular
	options.Mobile app: a school map that shows the location of	dislike. This helps students select the best design	purpose and audience. Students should test some
	buildings and rooms with a navigation path.	idea for further development.	limited features of their solutions to make any changes,
			if needed. They might like to pair with a student and
	Using an organisation chart template such as Smart Art or a	A paper prototype can be used in the design process	each complete one test of their partner's solution.
	mindmap students can break the problem down into sub elements	to map out ideas for example what's on screen, the logic behind transitioning between screens and how	
	for example in game design show the relationship between	various elements may work together as a system.	
	characters, movements, collisions and scoring.	The paper prototype can inform algorithm	
	Students should identify at least one constraint on the solution and	development.	
	investigate how that constraint is handled with existing games or		
	apps.	Use the algorithm to identify parts of the program	
		that involve branching (where decisions by the user	
	Use different approaches to organise collaborative groups so	are enabled), iteration (where loops and repeat	
	students have to work with a diverse range of students with	functions have reduced the script length and detail)	
	different skills, abilities and backgrounds. Implement strategies to	and other functions that might have been	
	help students work effectively. Support and guide students with	suggested for example the use of variables.	
	the planning and project management.		
		Students describe their algorithmic steps to others, and have other students interpret their algorithms	
		and give feedback to improve accuracy and clarity	
		of their instructions. Raising questions about the	

Students evaluate their solutions on the basis of how well they meet user needs, how innovative their solution is compared to existing solutions, and how sustainable their solution will be for different users, purposes, and technology improvements. It is often easier for students to frame these criteria as questions. This guides their evaluation and also focuses attention quite specifically on the functional requirements. For example:

- Was it easy to log on to the app?
- Could you change an action if you made a mistake?
- Is an action shown as an image as well as a noise? For example, clapping when a score was shown onscreen.
- Are answers/responses displayed on the screen quickly enough?
- Are the button/icons big enough so you can easily select the correct target?
- Was there something different about this game/app that you had never seen before?

		sequence helps students articulate their programing intentions.	
Supporting resources and			Learning to code:
tools and purpose/ context	Invent a Game!	Designing an algorithm	Learn to Code 3
for use.	This lesson is a transition lesson from coding using a visual	This resource provides a simple explanation and	Help students expand the coding skills to start thinking
	programming language to a general-purpose programming	example of Pseudocode.	more like an app developer. The guide supports
	language. It provides useful guidance around functions. This game		teachers to guide their students to code in Swift
	uses the robotic device Sphero and a Sphero App.	Flow chart software <u>Gliffy</u>	Playgrounds through unplugged activities and practice
			with the Swift Playgrounds app.
	Game design	Storyboard generator	
	This sequence of lessons integrates game design using scratch and	Use this free software to generate storyboards for	Grok learning resources
	a Makey Makey programming board. (Note this partially meets the	game or app design.	Grok provides online interactive programming courses
	programming achievement standard; to fully meet the standard		for individuals or classrooms.
	would need to program using general-purpose programming	Lesson 2: The Need for Algorithms	
	language.)	Students are presented with a "Human Machine	<u>Codecademy</u>
		Language" that includes 5-commands and then	This site provides tutorials on web design tools.
		must figure out how to use these primitive	
		commands to "program" the same algorithm.	Coding Ground
			Various text based programming languages with online
		Functions	development environments for students to explore and
		A good resource to explain functions needed	compare with block based languages.
		Lesson 8: Creating Functions with Parameters	Coding bat
		Students learn that writing functions with	This site provides a range of exercises to practice coding
		parameters can generalize solutions to problems	and to build coding confidence in Java and Python.
		even further.	
			Swift Playgrounds
		Mockflow	Swift Playgrounds is a free iPad app from Apple that
		Wireframe user interface design tool.	makes learning and experimenting with code
			interactive.
		Rapid Prototyping Studio	
		A range of ideas for prototyping	Lesson ideas:
			DT Challenge 7/8 Python – Chatbot
			Write programs to solve problems with code and create
			word games.

Evaluating the Product

Template for product evaluation.

			Tools to create mobile apps: AppLab Students can create apps and switch between block (visual) and text based programming. MIT App Inventor Students can create apps and test these on mobile devices.
Assessment			
	Suggested approaches may include:	Suggested approaches may include:	Suggested approaches may include:
	One constraint on the solution.	Two design ideas	,
	List of two or three functional requirements of the solution.	One example of each of branching and iteration in	A mini report (table/verbal/digital) for two tests
		the algorithm (diagrammatic or structured English)	outlining:
		Achievement standard	What is being tested in the solutionWhat are the expected results
			What were the actual results
	Achievement standard		What changes were made, if needed
	Define and decompose problems in terms of functional requirements	Design user experiences and algorithms incorporating	
	and constraints.	branching and iterations, and test, modify and	
		implement digital solutions.	Achievement standard
			Design user experiences and algorithms incorporating
			branching and iterations, and test, modify and implement
			digital solutions

Approach with a one-line prompt

Suggested approaches may include:

Demonstration of solution to a small group of students who rate key features on a scale.

Demonstration of solution to a small group of students who each identify **one** feature that they thought was innovative or interesting.

In pairs each student uses each other's solution and answers three evaluation questions.

Each student explains how their solution met **one** functional requirement and **one** constraint.

Achievement standard

Evaluate information systems and their solutions in terms of meeting needs, innovation and sustainability.