

1

Level up: Classes and objects
The following code is taken from the Roll-a-ball tutorial1 provided with Unity.

Object-oriented programming is different from procedural programming. In normal procedural
programming, you write a list of actions that are performed one after the other (in sequence). With
object-oriented programming, the programming is defined by sets of objects that have particular
properties that relate to each other in different ways.

For example, an object might be a person. That person has particular properties, such as a name, an
address, a hair colour, a weight and a height. Another object might be a chair. It has particular
properties such as colour, materials and strength. The person relates to the chair by sitting on it. The
chair relates to the person by holding that person up.

The beauty of object-oriented programming is in three main concepts: encapsulation, inheritance
and abstraction.

Concept Explanation Example Advantages

Encapsulation

Inheritance

Abstraction

1 https://unity3d.com/learn/tutorials/projects/roll-ball-tutorial/moving-camera?playlist=17141

© 2017 Education Services Australia Ltd, unless otherwise indicated. Creative Commons BY
4.0 licence, unless otherwise indicated.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://unity3d.com/learn/tutorials/projects/roll-ball-tutorial/moving-camera?playlist=17141

Classes and objects: Answers

© 2017 Education Services Australia Ltd, unless otherwise indicated. Creative Commons BY
4.0 licence, unless otherwise indicated.

2

Concept Explanation Example

Encapsulation An object contains properties that
are relevant to that object. These
objects can be fully contained within
their class. So, variables can be
declared private and relevant only to
that object.

In the program that we are working on, we
create an object called PlayerController. This
object contains variables that are only relevant
and needed within the player controller. For
example, it creates a local object of type
RigidBody (rb) that is only accessed from within
the player controller. If this was accessible
outside of the object, then objects might
interact with each other in odd ways. The main
advantage of this though, is that if the code that
the object needs stays within the object, then
you can reuse the object multiple times with
different uses

Inheritance An object can be created that is a
sub-object of another object,
inheriting all of the properties of that
object. You can then change
particular properties.

An object called Animal might be created that
has certain properties (is alive, needs sleep,
needs to eat). Then, a FourLeggedAnimal object
could be created that is a type of animal. This
means that it would inherit all of the Animal
properties, but might have its own properties as
well (has four legs).

A dog object may then be created that has the
properties of all of its parent objects (inherits all
of the properties of FourLeggedAnimal and that
of Animal)

Abstraction You can create an object of any type;
for example, an object doesn’t have
to be a data type, it creates its own
special data type.

In the program we are working on, we have
created many different objects that are
different types. For example:

Vector3 movement = new Vector3
(moveHorizontal, 0.0f, moveVertical);

This helps you; for example, in game design you
might create an enemy object that you could
clone by creating different instances of that
object.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

	Level up: Classes and objects
	Classes and objects: Answers

