

Developed by ACARA’s Digital Technologies in focus project
Australian Government Department of Education and Training CC BY 4.0

MICRO:BIT MISSIONS: TAKE A CHANCE ON ME (INTEGRATING MATHEMATICS)
The micro:bit is a small, programmable microcontroller that can be used to teach Digital
Technologies knowledge and understanding and skills. The micro:bit can be coded for
different purposes. Data can be inputted and outputted in various ways including through the
user interface (Figures 1 and 2) LED display and buttons.

Figure 1: A micro:bit showing a
representation of a skull with LED lights

Figure 2: A micro:bit showing a
representation of a snake with LED lights

This resource comprises two activities that can be used together or if you prefer as individual
activities to explore the concept of chance in Mathematics. Students will use computational
thinking and learn about Digital Technologies through exploring and using the micro:bit as a
digital system to generate and collect data and implement and/or modify a program
(algorithm) involving branching, iteration and functions in visual and/or general-purpose
programming language.

Real-world application: Using the concept of randomisation to generate data or design a
digital device has application in a range of industries and the creative arts. For example, in a
music playlist, a random number generator can be used to shuffle songs. Scientists use
randomised controlled trials to test hypotheses. Randomness is also used in gaming and in
lotteries and raffles. Read more in Leong, T, Howard, S & Vetere, F 2008, ‘Take a chance on
me: using randomness for the design of digital devices’, Interactions – Optimistic futurism,
vol. 15, issue 3, May + June, pp. 16–19. DOI 10.1145/1353782.135378. Access at
https://people.eng.unimelb.edu.au/showard/papers/Int08.pdf

CLASSROOM IDEAS: YEARS 6–8

https://microbit.org/guide/
https://people.eng.unimelb.edu.au/showard/papers/Int08.pdf

Developed by ACARA’s Digital Technologies in focus project
Australian Government Department of Education and Training CC BY 4.0

Resources required

• micro:bits and cables (one per student, group or station)
• www.makecode.org website or Python coding editor, for example Mu https://codewith.mu/

Mission: To demonstrate the ability to generate and interpret random data

These activities give students an opportunity to explore probability or the likelihood of
something happening. To do this, students need to collect and interpret data. The micro:bit
will be programmed to mimic two chance situations:

• flipping a coin (heads or tails)
• rolling a dice. Note: two versions are included: digital dice roll (version 1) and quick

digital dice roll (version 2).

Each situation will generate data that can be collated, providing opportunities for visual
presentation of the data (Years 5 and 6) and data representation (Years 7 and 8). For the
quick dice roll, the micro:bit will be programmed to very quickly roll a dice 100 times and
report back how many times each number 1–6 is rolled. This is simply to demonstrate how
quickly the micro:bit can achieve a task and store the results in an array.

For more information about how arrays store data in digital systems see:
https://makecode.microbit.org/courses/csintro/arrays/overview

Note: Mathematically, an array represents a multiplicative relationship; therefore, it is better
to use a table of data and discuss the reason for this if the activity has a mathematical focus.

This activity provides an ideal opportunity for students to:

• explore the micro:bit as a digital system including hardware and software components.
For example draw an annotated diagram of the micro:bit as a digital system using labels
of inputs and outputs together with the software and hardware involved

• explicitly discuss the computational thinking required in the activity
• plan the method they will use to collect and visualise data from the activity.

Activity instructions

1. Set up each activity station using the equipment required.
2. Choose the most appropriate coding algorithm for your context and student ability.

The algorithms are provided in:
A. pseudocode (simple terms or plain English) – page 4
B. block code (visual programming language) suited to Years 5–6 – page 5
C. Python (general-purpose programming language) suited to Years 7–8 – page 7.

3. Once the micro:bit has been coded, follow the user algorithm on the next page.
4. To model the functions of a digital system, choose a method to collect and interpret the

data.
Optional: You could design an algorithm to have the micro:bit collect the data for you. An
example of this is shown in Figure 3.

2

http://www.makecode.org/
https://codewith.mu/
https://makecode.microbit.org/courses/csintro/arrays/overview

Developed by ACARA’s Digital Technologies in focus project
Australian Government Department of Education and Training CC BY 4.0

User algorithm

Coin toss

1. Take your micro:bit – make sure it has a battery attached.
2. Press button A.
3. Record what comes up (heads or tails).
4. Repeat 20 times.
5. Graph your results (an example is shown in Figure 4).

Figure 3: A visual algorithm of the coin toss

Digital dice (for either version 1 or 2)
1. Press button B.
2. Record the number that comes up.
3. Repeat 20 times.
4. Graph your results.

3

Figure 4: One-way students may graph the results
of a coin toss. Students could compare results
from 20, 100 and a greater number

Developed by ACARA’s Digital Technologies in focus project
Australian Government Department of Education and Training CC BY 4.0

Coding algorithms

A. Pseudocode (simple terms or plain English)
Coin toss

START when button A is pressed

 Choose a random state (True or False)

 IF True

 Then display heads (skull)

 ELSE

 Display tails (snake)

END

Optional additional coin toss pseudocode

Consider adding code like this if you would like to have the micro:bit flip the coin and count the

number of heads and tails for you. Students could record the number of heads and tails for a small

number of flips and then progressively larger numbers of flips. They should notice the ratio converge

to 1.

FOREVER

 WHILE Button A is not pressed

 Pick a random number between 0 and 1

 IF it’s 0 SET Heads = Heads+1

 ELSE SET Tails = Tails +1

On Button A pressed

 Show number Heads

 Pause 1000

 Show number Tails

Digital dice roll (version 1)

Begin when button B is pressed

 Choose a random number between 1 and 6 and store it in a variable (called random)

 Display random number

End

4

Developed by ACARA’s Digital Technologies in focus project
Australian Government Department of Education and Training CC BY 4.0

Quick digital dice roll (version 2)
Begin when buttons A + B are pressed together

Create a variable called counter and set its value to 1

Create a variable for each of the numbers 1–6 (one, two, three, four, five, six) and set them all to zero

Repeat

Display small square (to show it is working) … If you want it to work fast don’t display either square

Choose a random number between 1 and 6

 If random number is 1

 Add 1 to one

 Else if random number is 2

 Add 1 to two

 Else if random number is 3

 Add 1 to three

 …

 Else if random number is 6

 Add 1 to six

 Add 1 to counter

 Display large square (to show it is working)

Until counter = 100

Display one, two, three…six (One – 12, Two – 8, Three – 15…Six – 11)

B. Block code (visual programming language)
Coin toss

5

Figure 5

Developed by ACARA’s Digital Technologies in focus project
Australian Government Department of Education and Training CC BY 4.0

Figures 5 and 6 show comments on yellow note cards to the right of the code blocks. These
can be used by a teacher to describe what is happening in the code itself to scaffold learning
or to provide feedback. They can also be used by a student to describe how they have
designed and implemented code.

Digital dice roll (version 1)

Quick digital dice roll (version 2)

The quick digital dice roll version 2 is demonstrated in both Figures 7a and 7b.

6

Figure 6

Figure 7a

Figure 7b

Developed by ACARA’s Digital Technologies in focus project
Australian Government Department of Education and Training CC BY 4.0

C. Python code (general-purpose programming language)

The comments indicated in green and preceded by a hashtag (#) are not part of the code
and are there only to further explain the code in more detail.

Coin toss
from microbit import * # get the standard microbit library
import random # get lib that generates random numbers

while True: # do this forever
 if button_a.was_pressed():
 toss = random.randrange(1, 3) # chooses a random number between 1 & 2
 if toss == 1: # note the double == to mean equals
 display.show(Image.SKULL) # skull indicates heads
 else:
 display.show(Image.SNAKE) # snake indicates tails
 sleep(1000)
 display.clear()

Digital dice roll (version 1)
from microbit import * # get the standard micro:bit library
import random # get lib that generates random numbers

while True: # do this forever
 if button_b.was_pressed():
 dice = random.randrange(1, 7) # chooses a random number between 1 & 6
 display.show(dice) # show result of the random selection
 sleep(1000)

Quick digital dice roll (version 2)
from microbit import * # get the standard micro:bit library
import random # get lib that generates random numbers

list for quick coin toss
mylist = [] # create an empty list
while True:
 if button_a.was_pressed():
 for i in range(20): # repeat the below line 20 times
 mylist.append(random.randrange(1, 7)) # add rnd number (1-6) to list

 one = mylist.count(1) # find how many 1s in the list
 two = mylist.count(2) # find how many 2s in the list
 three = mylist.count(3)
 four = mylist.count(4)
 five = mylist.count(5)
 six = mylist.count(6)

 display.scroll(one) # print the number of 1s
 display.scroll(two) # print the number of 2s
 display.scroll(three)
 display.scroll(four)
 display.scroll(five)
 display.scroll(six)

7

Developed by ACARA’s Digital Technologies in focus project
Australian Government Department of Education and Training CC BY 4.0

Combine all chance programs into one
Below is code that combines the three chance programs into one program.

from microbit import * # get the standard micro:bit library
import random # get lib that generates random numbers

while True: # do this forever
 if button_a.was_pressed():
 toss = random.randrange(1, 3) # chooses a random number between 1 & 2
 if toss == 1: # note the double == to mean equals
 display.show(Image.SKULL) # skull indicates heads
 else:
 display.show(Image.SNAKE) # snake indicates tails
 sleep(1000)
 display.clear()

 if button_b.was_pressed():
 dice = random.randrange(1, 7) # chooses a random number between 1 & 6
 display.show(dice) # show result of the random selection
 sleep(1000)

 if accelerometer.was_gesture('left'): # move micro:bit left to activate
 mylist = [] # create a blank list
 for i in range(20): # repeat the below line 20 times
 mylist.append(random.randrange(1, 7)) # add rnd number (1-6) to list

 one = mylist.count(1) # find how many 1s in the list
 two = mylist.count(2) # find how many 2s in the list
 three = mylist.count(3)
 four = mylist.count(4)
 five = mylist.count(5)
 six = mylist.count(6)

 display.scroll(one) # print the number of 1s
 display.scroll(two) # print the number of 2s
 display.scroll(three)
 display.scroll(four)
 display.scroll(five)
 display.scroll(six)

8

Developed by ACARA’s Digital Technologies in focus project
Australian Government Department of Education and Training CC BY 4.0

Links to the Australian Curriculum

Tables 1 and 2 give teachers an opportunity to see related aspects of the Australian Curriculum.

Table 1: Aspects of the Australian Curriculum: Digital Technologies 5–6 which may be
addressed depending on the task.

Digital
Technologies
Achievement
standard

By the end of Year 6, students explain the fundamentals of digital system
components (hardware, software and networks) and how digital systems are
connected to form networks. They explain how digital systems use whole
numbers as a basis for representing a variety of data types.
Students define problems in terms of data and functional requirements and design
solutions by developing algorithms to address the problems. They incorporate
decision-making, repetition and user interface design into their designs and
implement their digital solutions, including a visual program. They explain how
information systems and their solutions meet needs and consider sustainability.
Students manage the creation and communication of ideas and information in
collaborative digital projects using validated data and agreed protocols.

Strands Digital Technologies knowledge and understanding
• Digital systems
Digital Technologies processes and production skills
• Collecting, managing and analysing data
• Creating digital solutions by:

– Investigating and defining
– Generating and designing
– Producing and implementing

Content
descriptions

• Examine the main components of common digital systems and how they may
connect together to form networks to transmit data (ACTDIK014)*

• Acquire, store and validate different types of data, and use a range of software
to interpret and visualise data to create information (ACTDIP016)*

• Define problems in terms of data and functional requirements drawing on
previously solved problems (ACTDIP017)

• Design, modify and follow simple algorithms involving sequences of steps,
branching, and iteration (repetition) (ACTDIP019)

• Implement digital solutions as simple visual programs involving branching,
iteration (repetition), and user input (ACTDIP020)

Key concepts • data collection*
• data interpretation
• specification
• algorithms
• implementation
• digital systems

Key ideas Thinking in Technologies
• computational thinking

Cross-
curriculum
priorities

General
capabilities

• Information and Communication
Technology (ICT) Capability

• Literacy
• Numeracy

*aspects which may or may not be addressed depending on the lesson design.

9

http://www.scootle.edu.au/ec/search?accContentId=ACTDIK014
http://www.scootle.edu.au/ec/search?accContentId=ACTDIP016
http://www.scootle.edu.au/ec/search?accContentId=ACTDIP017
http://www.scootle.edu.au/ec/search?accContentId=ACTDIP019
http://www.scootle.edu.au/ec/search?accContentId=ACTDIP020

Developed by ACARA’s Digital Technologies in focus project
Australian Government Department of Education and Training CC BY 4.0

Table 2: Aspects of the Australian Curriculum: Digital Technologies 7–8 which may be
addressed depending on the task.

Digital
Technologies
Achievement
standard

By the end of Year 8, students distinguish between different types of networks
and defined purposes. They explain how text, image and audio data can be
represented, secured and presented in digital systems.
Students plan and manage digital projects to create interactive information. They
define and decompose problems in terms of functional requirements and
constraints. Students design user experiences and algorithms incorporating
branching and iterations, and test, modify and implement digital solutions. They
evaluate information systems and their solutions in terms of meeting needs,
innovation and sustainability. They analyse and evaluate data from a range of
sources to model and create solutions. They use appropriate protocols when
communicating and collaborating online.

Strands Digital Technologies processes and production skills
• Collecting, managing and analysing data
• Creating digital solutions by:

– Investigating and defining
– Producing and implementing

Content
descriptions

• Analyse and visualise data using a range of software to create information,
and use structured data to model objects or events (ACTDIP026)

• Define and decompose real-world problems taking into account functional
requirements and economic, environmental, social, technical and usability
constraints (ACTDIP027)

• Implement and modify programs with user interfaces involving branching,
iteration and functions in a general-purpose programming language
(ACTDIP030)

Key concepts • data collection
• data interpretation
• specification
• algorithms
• implementation

Key ideas Thinking in Technologies
• computational thinking

Cross-
curriculum
priorities

 General

capabilities

• Information and Communication
Technology (ICT) Capability

• Literacy
• Numeracy

Useful links
• Find out more about the micro:bit at www.microbit.org
• Code the micro:bit at www.makecode.org

Disclaimer: ACARA does not endorse any product or make any representations as to the quality of such
products. This resource is indicative only. Any product that uses material published on the ACARA website
should not be taken to be affiliated with ACARA or have the sponsorship or approval of ACARA. It is up to each
person to make their own assessment of the product, taking into account matters including the degree to which
the materials align with the content descriptions and achievement standards of the Australian Curriculum. The
Creative Commons licence BY 4.0 does not apply to any trademark-protected material.

All images in this resource used with permission

10

http://www.scootle.edu.au/ec/search?accContentId=ACTDIP026
http://www.scootle.edu.au/ec/search?accContentId=ACTDIP027
http://www.scootle.edu.au/ec/search?accContentId=ACTDIP030
http://www.microbit.org/
http://www.makecode.org/

Developed by ACARA’s Digital Technologies in focus project
Australian Government Department of Education and Training CC BY 4.0

Links to Mathematics
To explore a purposeful connection to Mathematics, students should discuss possible outcomes and
calculate the expected probabilities before attempting to program or collect data from the micro:bit.
The main activity described in this resource is focused on data collection and representation.
Students are collecting data and representing the outcomes graphically. Consider including in the
lesson plan that students will identify the expected outcomes and probabilities before choosing the
code. They can then compare their predictions with the results they collected during the micro:bit
tasks. Students could also compare the coin toss and dice roll as random experiments and compare
them to their theoretical probability (ACMSP146). Year 6 students could also investigate recording
probability as percentages and decimal representations, which forms part of learning in the ‘Number
and Algebra’ strand. Refer to: https://www.australiancurriculum.edu.au/f-10-curriculum/mathematics/

Mathematics Year 6
Content strand: Statistics and probability
Sub-strand: Chance
Content description:
• Describe probabilities using fractions, decimals and percentages (ACMSP144)
Elaboration:
• investigating games of chance popular in different cultures and evaluating the relative benefits to

the organisers and participants (for example Pachinko)
Content description:
• Conduct chance experiments with both small and large numbers of trials using appropriate digital

technologies (ACMSP145)
Elaboration:
• conducting repeated trials of chance experiments, identifying the variation between trials and

realising that the results tend to the prediction with larger numbers of trials
Content description:
• Compare observed frequencies across experiments with expected frequencies (ACMSP146)
Elaboration:
• predicting likely outcomes from a run of chance events and distinguishing these from surprising

results

Mathematics Year 7
Content strand: Statistics and probability
Sub-strand: Chance Content description:
• Construct sample spaces for single-step experiments with equally likely outcomes (ACMSP167)
Elaboration:
• distinguishing between equally likely outcomes and outcomes that are not equally likely
Content description:
• Assign probabilities to the outcomes of events and determine probabilities for events (ACMSP168)
Elaboration:
• expressing probabilities as decimals, fractions and percentages

Mathematics Year 8
Content strand: Statistics and probability
Sub-strand: Chance
Content description:
• Identify complementary events and use the sum of probabilities to solve problems (ACMSP204)
Elaboration:
• understanding that probabilities range between 0 to 1 and that calculating the probability of an

event allows the probability of its complement to be found

Note: ACMSP204 would work well as heads and tails are complementary events; rolling a 5 and not
rolling a 5 are complementary but rolling a 5 or rolling a 6 are not.

11

https://www.australiancurriculum.edu.au/f-10-curriculum/mathematics/

