u Australian .. R . O
SEEEEREL Computing GROK DT Mini Challenge - Intro to micro:bit = TSHEYEBE\INE{%F
TYRCIEET Academy @ PR LEARNING T

) Australian
= Computing
* Academy

DT Mini Challenge
Intro to micro:bit

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

i i compns 9 GROK DT Mini Challenge - Intro to micro:bit N

=mm Academy LEARNING
n

1. Displaying images and text
2. Buttons and gestures

3. Virtual Pet extensions

@C-EA_(mps://creativecommons.org/licenses/by/4.0/)

The Australian Digital Technologies Challenges is an initiative of, and funded by the
Australian Government Department of Education and Training
(https:/www.education.gov.au/).

© Australian Government Department of Education and Training.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

sia F Computing GROK DT Mini Challenge - Intro to micro:bit ' g?gﬁﬁ?

H
IETRERT Academy LEARNING
H

DISPLAYING IMAGES AND TEXT

1.1. Getting started

1.1.1. BBC micro:bit

The BBC micro:bit (https:/www.microbit.co.uk/) is a tiny computer that runs the Python (https:/microbit-
micropython.readthedocs.io) programming language.

The micro:bit has:

o a5 x5 display of LEDs (light emitting diodes)

¢ two buttons (A and B)

¢ an accelerometer (to know which way is up)

¢ amagnetometer (like a compass)

¢ atemperature sensor

¢ Bluetooth (to talk to other micro:bits and phones)

¢ pins (gold pads along the bottom) to connect to other devices like screens, motors, buttons, lights,
robots and more!

Q If you don't have a real micro:bit...

You can still do this course. It includes a full micro:bit simulator, so you'll be able to do everything you'd
do on a real micro:bit!

1.1.2. Hello, micro:bit!

Let's jump right in with a program...

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

Australian THE UNIVERSITY OF

L Computing Sg?l(c DT Mini Challenge - Intro to micro:bit SYDNEY

Our first program is turning on a light (light emitting diode or LED). The micro:bit has 25 LEDs, so let's use
lots of them!

Click run » in the example below:

from microbit import *

display.show(Image.HAPPY)

Congratulations, you just programmed a micro:bit!

1.1.3. Importing microbit
Let's have a closer look at the first line (called a statement):
I from microbit import *

microbit is a Python module (a library of useful code) that we use to control the BBC micro:bit.
The * (called an asterisk) means everything, so it imports all of the code from the microb+it module.

This statement must be at the top of every micro:bit program. We'll include it for you, but don't delete it,
or your programs won't work!

Q micro:bit vs. microbit

The BBC micro:bit is the device, and microb-it is the Python module. Careful of the colon!

1.1.4. Using the microbit module
Everything we use in the second statement is imported from the microbit module:

e display.show is a method (like a command) of the display object, which controls the micro:bit's
display.
e Image.HAPPY is a built-in image provided by the Image class.

We call (run) the display.show method by putting brackets after it. The image we want to display goes
inside the brackets:

from microbit import *

display.show(Image.HAPPY)

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

H
IETRERT Academy LEARNING
H

CHE éﬁfrt\:aalllt?:g GROK DT Mini Challenge - Intro to micro:bit - TSH?B%NE%F

Q What is a statement?

A statement is the smallest stand-alone part of a program. It tells the computer to do something.
Importing the microb+it module and calling display.show are both examples of statements.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

CHE Computing GROK DT Mini Challenge - Intro to micro:bit

i Academy LEARNING
n

1.1.5. Problem: Happy micro:bit!

Write a program that shows the happy face on the micro:bit:

What, again? Yes, now it's your turn to write it from scratch.

THE UNIVERSITY OF

SYDNEY

If you're not sure how to start writing the program, go back a few pages and take another look at the

notes.

Q How do | submit?

1. Write your program (in the program.py file) in the editor
(large panel on the right);

2. Run your program by clicking P in the top right-hand menu bar. The micro:bit will appear

Run

below, running your code. Check that it works correctly!

3. Mark your program by clicking % and we will automatically check if your program is correct,

Mark
and if not, give you some hints to fix it up.

You'll need

program.py

I from microbit import *

Testing
[J Testing that the display is showing a happy face.

O Congratulations, you've written your first micro:bit program!

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

Australian

§&&i-223 Computing GROK DT Mini Challenge - Intro to micro:bit

IETRERT Academy LEARNING
H

1.1.6. Problem: Your own Virtual Pet!

Now it's time to create your own virtual pet!

Write a program that shows a picture of a rabbit on the micro:bit:

To display the rabbit image you can write: display.show(Image.RABBIT).

Q Microbit module

Don't forget to import the microbit module before you display the rabbit!

Testing
[0 Testing that the display is showing a rabbit face.

O Congratulations, you've written your first micro:bit program!

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

THE UNIVERSITY OF

SYDNEY

THE UNIVERSITY OF

=EE= F Computing GROK DT Mini Challenge - Intro to micro:bit SYDNEY

ae Academy LEARNING
n

1.1.7. Downloading

If you have a real micro:bit you can download your code and run it in real life!

Clickthe & button you will get a . hex file.

Download
Take the .hex and drag it into the micro:bit - just like it's a USB drive.

It will take a few seconds, but once it's done you'll see your program running on the micro:bit!
You can also read our blog post with more detailed instructions (https:/medium.com/p/b8%fbbac2552).

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

Australian "..-
SiREEES. Computing GROK DT Mini Challenge - Intro to micro:bit - TSP%E(UB'f\I“E{zF
RRTEERT Academy LEARNING N

1.2. Wrriting micro:bit programs

1.2.1. HAPPY to SAD

We've seen that you can run the code examples in our notes. You can also edit them and play with the
code!

Try changing the example below to Image.SAD and click run » to see what it looks like:

from microbit import *

display.show(Image.HAPPY)

Click & to swap to the original code. Click again to swap back to your modified version.

Q Play with the examples!

Try running and modifying (messing around with even!) every example in these notes to make sure you
understand it.

1.2.2. More images!

There are lots of images included in Image for you to use. We've already seen Image.HAPPY and
Image.SAD.

Here are some of our favourite images:

Name Image
Image.HAPPY I
n n
EEER
Image .HEART T
EEEER
EEE
n
anm
Image.DUCK amm
EEER
EEER
Image .PACMAN s
W
EEEER
EEER
Image . ARROW_N AN
n n n
n
n
Image.ARROW_E "u
EEEER
n
n

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

u Australian

EEE=.=='= Computing GROK

= =mm* Academy LEARNING
.

Name

Image.SAD
Image.GIRAFFE
Image.BUTTERFLY
Image.GHOST
Image.ARROW_S

Image.ARROW_W

DT Mini Challenge - Intro to micro:bit

You can find the full list here (https:/microbit-

micropython.readthedocs.io/en/latest/tutorials/images.html).

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

Image

THE UNIVERSITY OF

o) SYDNEY

10

] ; Australiz-_m . e _ . e THE UNIVERSITY OF
=--==='-E§-= Compuing Sg?l(c DT Mini Challenge - Intro to micro:bit SYDNEY
1.2.3. Problem: From micro:bit with love &=

Do you have trouble thinking of a gift every year for Mother's Day? Let's use the micro:bit to create a
Mother's Day card!

Write a program to display a picture of a heart using Image .HEART:

You'll need

program.py

I from microbit import *
Testing

[0 Testing that the display is showing a heart.

O Congratulations, what a great gift!!

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

11

CHE éﬁfrt\:aalllt?:g GROK DT Mini Challenge - Intro to micro:bit TS“?B%“E{%F

m* Academy LEARNING

1.2.4. More pets!
The microb+it module gives us a whole set of virtual pets we can use. We've already seen Image.RABBIT.

Choose your own pet from this list:

Name Image
" =
Image.RABBIT " .
HEEE
EE (m
HEEE
Image.COW ;7 ;
EEEEN
HEE
L]
um
Image.DUCK mmjm
EEEw
HEE
Image.TORTOISE mmm
EEEEN
" m
Name
Image.BUTTERFLY
Image.GIRAFFE
Image.SNAKE

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 12

Australian THE UNIVERSITY OF

=EE='E§= Computing Sg?l(c DT Mini Challenge - Intro to micro:bit SYDNEY
1.2.5. Problem: Pick a pet! B

Since you took such good care of your last pet, it's time to choose your own virtual pet!
Choose one of the pet pictures listed on the previous slide and write a program to display it.

For example, if you like Python, you could choose the pet snake:

You'll need

program.py

I from microbit import *

Testing
O Testing that the display is showing one of the seven pets.

O Well done, you've made your own virtual pet!

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 13

Australian

§&&i-223 Computing GROK DT Mini Challenge - Intro to micro:bit

IETRERT Academy LEARNING
H

1.3. Animation

THE UNIVERSITY OF

SYDNEY

1.3.1. Ducks in a row
What if we want to show different images one after another?
Try running this:

from microbit import *

display.show(Image.GIRAFFE)
display.show(Image.DUCK)

We only see a picture of a duck!

The code runs so fast that the giraffe doesn't stay on the display long enough for us to see it.

1.3.2. The sleep function

We can stop things going too fast using the sleep function:
from microbit import *
display.show(Image.GIRAFFE)

sleep(2000)
display.show(Image.DUCK)

Now it shows the giraffe, waits for 2 seconds, then shows the duck:

The sleep function makes the micro:bit wait for some time.

Q@ What is a function?

A function is a reusable piece of code that does a particular job.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

14

Australian "..-
SiREEES. Computing GROK DT Mini Challenge - Intro to micro:bit - TSP%E(UB'f\I“E{zF
IRTIER" Academy LEARNING N

1.3.3. Sleep for milliseconds

The sleep function needs information to do its job - it needs to know how long to wait for. We call this
information an argument.

sleep expects the time in milliseconds (ms).
There are 1000 milliseconds in a second, so two seconds is 2 x 1000 = 2000 ms.

That's why when we call (or run) sleep (2000), the giraffe stays on screen for two seconds:

from microbit import *

display.show(Image.GIRAFFE)
sleep(2000)
display.show(Image.DUCK)

1.3.4. To dot or not to dot

Why doesn't sleep have a dot like display.show?
Because sleep is a function that controls the whole micro:bit, while display.show is a method that
controls the display.

You call a method and a function the same way: by typing the name followed by round brackets. Any
arguments go inside the brackets.

A method is just attached to something with a dot.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 15

] ; Australiz_in . . _ . e THE UNIVERSITY OF
=--==='-E§-= Compuing Sg?l(c DT Mini Challenge - Intro to micro:bit SYDNEY
1.3.5. Problem: Pulling faces B

Your micro:bit is feeling a bit meh today. Let's pull a silly face to make it feel happy again!

Write a program that shows a meh face for one second, followed by a silly face for 1.5 seconds, before
ending on a happy face.

Here are the built-in images for you to use:

Name Image
n n
Image.MEH
.I
n
L] u
Image.SILLY oooo
MEEEN
n n
EEEm
Image.HAPPY " .
L] u
EEnm

Q Sleep for milliseconds

Remember: the sleep function takes the time in milliseconds. You can convert seconds to milliseconds
by multiplying by 1000.

You'll need

program.py

I from microbit import *

Testing

O Testing that the display starts with a meh face.

(0 Testing that the meh face is still on the screen less than 1 second later.
O Testing that the display changes to a silly face after 1 second.

(0 Testing that the silly face stays on the display for 1.5 seconds.

O Testing that the display changes to a happy face after 2.5 seconds.

[J Congratulations!!

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 16

] ; Australiz_in . e _ . e THE UNIVERSITY OF
=--==='-E§-= Compuing Sg?l(c DT Mini Challenge - Intro to micro:bit SYDNEY
1.3.6. Problem: Virtual cocoon &=

Your virtual pet snake is jealous of all the virtual pet caterpillars! Help it transform into a butterfly like its
fuzzy little friends.

Write a program that shows a snake for 1.5 seconds, followed by a small diamond for 2 seconds, followed
by a large diamond for 0.5 seconds, before ending on a butterfly.

Here are the built-in images for you to use:

Name Image
Image.SNAKE s mm
aam
Image.DIAMOND_SMALL .
I.I
Image.DIAMOND BN
I. .I
n
Image.BUTTERFLY 1t
II:II
mam mam

Q Sleep for milliseconds

Remember: the sleep function takes the time in milliseconds. You can convert seconds to milliseconds
by multiplying by 1000.
You'll need

program.py

I from microbit import *

Testing

[0 Testing that the display starts with a snake.

[0 Testing that the snake is still on the screen less than 1.5 seconds later.
[J Testing that the display changes to a small diamond after 1.5 seconds.
[0 Testing that the small diamond stays on the display for 2 seconds.

[J Testing that the display changes to a large diamond after 2 seconds.

[0 Testing that the small diamond stays on the display for 2 seconds.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html e

EEE. F Computing GROK DT Mini Challenge - Intro to micro:bit

=
am Academy LEARNING
n

O Testing that the display changes to a butterfly after 0.5 seconds.

O Congratulations! You turned the snake into a butterfly!

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

)
THE UNIVERSITY OF

SYDNEY

18

Australian "..-
Siamzaaa Computing GROK DT Mini Challenge - Intro to micro:bit - TSP%E(UB'T\I“E%O;
IPRTLEET Academy LEARNING L

1.4. Fixing errors

1.4.1. When things go wrong

When you talk, you need to follow certain rules to be understood, called the grammar or syntax of a
language.

Like English, Python has its own syntax. However, unlike people, computers can't understand bad grammar
at all!

Run the following example with an image that doesn't exist. Then click B to stop it running:

from microbit import *

display.show(Image.EXCITED)

Traceback (most recent call last):

File "__main__", line 3, in <module>
AttributeError: type object 'MicroBitImage' has no attribute 'EXCITED'
MicroPython vi1.7-9-gbe020eb on 2016-09-14; micro:bit with nRF51822
Type "help()" for more information.
>>>
soft reboot

The BBC micro:bit scrolls the error on the display, which is hard to read. We'll also print the error message
in another box for you.

Q Don't panic!
Errors happen all the time, but don't worry, you can learn to fix them. Try to read and understand the
error message.

Q Errors on a real micro:bit

To see the printed error message for a real micro:bit, you'll need to use the serial console over USB
(https:/www.microbit.co.uk/td/serial-library).

1.4.2. Help! | have a Syntax Error

A SyntaxError just means that you haven't followed the grammar or syntax of the programming language,
so the computer can't understand you!

Let's practise fixing a SyntaxError together. Run this program:

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 19

H
IETRERT Academy LEARNING
H

from microbit import *

sleep (2000
display.show(Image.DUCK)

Traceback (most recent call last):
File "__main__", line 4
SyntaxError: invalid syntax
MicroPython vi1.7-9-gbhe020eb on 2016-09-14; micro:bit with nRF51822
Type "help()" for more information.
>>>
soft reboot
Traceback (most recent call last):
File "__main__", line 4
SyntaxError: invalid syntax

Q Where's the error?

The error message tries to help by printing which line it thinks the error is on. In this example, it says
line 4.

If it doesn't seem like there's an error where the error message says, try looking on the previous line.

Hover me for answer

1.4.3. Scrolling letters and words
We can scroll our own message on the micro:bit display using the display.scroll method.

display.scroll takes a string as an argument.

from microbit import *

display.scroll('Hello")

A string can contain any letters, digits, punctuation and spaces that you want. We use the single quote to
start and end the string.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

CHE Computing GROK DT Mini Challenge - Intro to micro:bit TS“?]’”)V&“E{%F

20

Australian 0=
SiREzszu Computing GROK DT Mini Challenge - Intro to micro:bit TSH?Bf\INE%F
. & Academy LEARNING

from microbit import *

display.scroll('abc ABC 123 @!7.#")

Q A string of characters

The individual letters, digits, symbols and spaces are called characters and the word string is short for
string of characters.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 21

Australian THE UNIVERSITY OF

=EE='E§= Computig Sg?l(c DT Mini Challenge - Intro to micro:bit SYDNEY
1.4.4. Problem: | ® micro:bit &=

Let's put everything we've learned so far together. Write a program to animate the message: | ® micro:bit!

Your program should scroll 1, then show the heart image Image.HEART for one second, then scroll
micro:bit!

Q How to read the error message

If you get an error, don't panic. When solving problems, you can click the <> button on the left of

your micro:bit to read the error message.

Pay attention to punctuation, and double check if the letter should be upper or lower case. Computers
are very picky; even a single character can make a difference.

You'll need

program.py

I from microbit import *

Testing

O Testing that an T scrolls past.

[0 Testing that a heart appears after the 1.

O Testing that the heart stays on the display for 1 second.
[0 Testing that an m scrolls past.

O Testing that micro:bit! scrolls past.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 22

CHE éﬁfrt\:aalllt?:g GROK DT Mini Challenge - Intro to micro:bit TS“?B%“E{%F

m* Academy LEARNING

1.4.5. More faces!

Here are a list of faces you can use to give your pet some personality:

Name Image
Image.HAPPY I
m n
EEEm
Image.SAD nm
EEnm
L] u
Image.MEH Slals
.I
n
w []
Image.SILLY
e
n n
EEEm
m n
Image.ANGRY nm
[
W w
Name Image
Image.FABULOUS am mm
n n
EEnm
Image.ASLEEP AN EN
EEEm
Image.CONFUSED nm
|] |]
|] |] |]
Image.SURPRISED Slals
I.I
n

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 23

Australian THE UNIVERSITY OF

=EE='E§= Computing Sg?l(c DT Mini Challenge - Intro to micro:bit SYDNEY
1.4.6. Problem: My duck is sad =)

Now let's used what we've learned to give our pet some personality! Write a program to animate a
message like: My & is @

Your program should scroll My, then show an image of your pet (for example Image.DUCK) for one second,
then scroll 1 s then show a face (for example Image.SAD).

You can use any animal or face in the correct order.

You'll need

program.py

I from microbit import *

Testing

[Testing that a My scrolls past.

[0 Testing that a pet appears after the my.

O Testing that the pet stays on the display for 1 second.
O Testing that s scrolls past.

(0 Testing that a face appears after the 1s.

[0 Testing that the face stays on the display.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 24

Australian

EEE=.=='= Computing GROK

= =mm" Academy LEARNING
n

1.5. Summary

DT Mini Challenge - Intro to micro:bit

SY

THE UNIVERSITY OF
DNEY

1.5.1. Congratulations!
You've reached the end of Module 1.
We learned about:

e what's in the BBC micro:bit

¢ displaying images on the micro:bit

e built-in images

¢ making the micro:bit wait with sleep

o the difference between methods and functions
e syntax errors and how to fix them

¢ scrolling text on the display

Click 9 to continue on to Module 2: Making decisions with buttons and gestures.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

25

H
IETRERT Academy LEARNING
H

CHE éﬁfrt\:aalllt?:g GROK DT Mini Challenge - Intro to micro:bit ' TSH?B%NE%F

BUTTONS AND GESTURES

2.1. Looping forever

2.1.1. Introducing loops

So far, our programs make the micro:bit do something and then stop. What if we want the program to
keep running forever?

We can use a whiile loop to run some code again (and again)!
For example, this heartbeat will keep running until you stop it:

from microbit import *

while True:
display.show(Image.HEART)
sleep(500)
display.show(Image.HEART_SMALL)
sleep(500)

Q You have to click stop!

Don't forget to use the B button to stop the program, otherwise it will keep running forever.

2.1.2. Visualising a loop
Let's look at the heartbeat program as a flowchart.

Follow the arrows to see how the program runs. The loop only finishes when the answer to “is the value
True?”is no.

To make the loop run forever, we give it the value True, so it's stuck going around the "yes" part of the
flowchart. This kind of loop is called an infinite loop.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 26

i i compns 9 GROK DT Mini Challenge - Intro to micro:bit N

=mm Academy LEARNING
n

Show big heart

Sleep for 0.5 s

Show small heart

Sleep for 0.5 s

2.1.3. Writing a while loop

A while loop keeps repeating while the condition is True. To create an infinite loop, we give a while loop
the condition True by typing:

I while True:

Don't forget the colon!
Put the code to repeat inside the loop by indenting it with spaces:
from microbit import *
while True:
display.show(Image.HEART)
sleep(500)

display.show(Image.HEART_SMALL)
sleep(500)

The last 4 statements are indented, so they are all repeated:

Q Indentation

We indent by putting spaces at the beginning of the line. Indentation tells Python that the code is
inside the loop.

Make sure you use the same number of spaces for indenting each line inside the loop.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 27

] ; Australiz_in . e _ . e THE UNIVERSITY OF
=--==='-E§-= Compuing Sg?l(c DT Mini Challenge - Intro to micro:bit SYDNEY
2.1.4. Problem: Tick tock &=

Time is ticking! Write a program to move a clock hand continuously around the display.

It should start at 12 o'clock, go to 3 o'clock, then 6 o'clock, and then 9 o'clock, staying in each position for
one second.

Here are the images for you to use:

Name Image

Image.CLOCK12

Image.CLOCK3

Image.CLOCK6

Image.CLOCK9

Q You have to click stop!

When you run your program, you'll need to click the B button to stop it running before you'll be able
to submit.

You'll need

program.py

I from microbit import *

Testing

O Testing that the display starts with 12 o'clock.

O Testing that the display is still showing 12 o'clock after less than a second.
O Testing that the display shows 3 o'clock for a second.

[0 Testing that the display shows 6 o'clock for a second.

O Testing that the display shows 9 o'clock for a second.

[0 Checking that your code contains an infinite loop.

O Testing that the display goes back to 12 o'clock for a second.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 28

] Australian
&585-52& Computing GROK DT Mini Challenge - Intro to micro:bit
e Academy LEARNING

O Testing that the animation loops continuously.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

THE UNIVERSITY OF

SYDNEY

29

Australian THE UNIVERSITY OF

=EE='E§= Computing Sg?l(c DT Mini Challenge - Intro to micro:bit SYDNEY
2.1.5. Problem: Pet shop B

How much is that turtle in the window? Or that Giraffe? Show me all of your pets!

Make a program to show each of the animals on the micro:bit for 1 second each. And then repeat forever!

Here are the pet images for you to use. Make sure you show them in order!

Name Image
n n
Image.RABBIT .
EEEER
am n
EEEER
Image.COW - -
EEEER
EEEm
n
Image.DUCK amm
EEEER
EEnm
Image.TORTOISE EEE
EEEER
n n
Image.BUTTERFLY Tt
wnnsw
Image.GIRAFFE .
:II
|] |]
Image.SNAKE s mm
1
You'll need

program.py

I from microbit import *

Testing

(O Testing that the display starts with a rabbit.

[J Testing that the display is still showing a rabbit after less than a second.
[Testing that the display shows a cow for a second.

O Testing that the display shows a duck for a second.

[Testing that the display shows a tortoise for a second.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 30

Australian

§&&i-223 Computing GROK DT Mini Challenge - Intro to micro:bit

H
IETRERT Academy LEARNING
H

O Testing that the display shows a butterfly for a second.

O Testing that the display shows a giraffe for a second.

O Testing that the display shows a snake for a second.

[0 Checking that your code contains an infinite loop.

O Testing that the display goes back to a rabbit for a second.
[0 Testing that the animation loops continuously.

O Well done! You can loop forever!

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

SY

THE UNIVERSITY OF
DNEY

31

)
THE UNIVERSITY OF

CHE Computing GROK DT Mini Challenge - Intro to micro:bit SYDNEY

H
IETRERT Academy LEARNING
H

2.2. Making decisions with buttons

2.2.1. Button A and Button B
The BBC micro:bit has two buttons, labelled A and B.

Button B

Button A

The microbit module represents these buttons as two objects: button_a and button_b.

These are just like the display object you've been using, but they have their own methods. For example,
we can call the is_pressed method:

e button_a.is_pressed() to check if Button A is being held down
e button_b.is_pressed() to check if Button B is being held down

Q Methods are attached
We need to attach the is_pressed method to button_a or button_b, otherwise we wouldn't know
which button to check.

2.2.2. Making decisions

So far our programs have changed the micro:bit display (produced output). These programs have run the
same way every time.

We want our programs to react to things in the world (respond to input), like someone pressing a micro:bit
button.

This flowchart describes a process (or algorithm) that makes the program run differently if a button is

pressed:

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

H
IETRERT Academy LEARNING
H

Is button
pressed?

The diamond requires a yes or no decision. The answer determines which line we follow. If the answer is
yes, we do the extra step of showing an image. If the answer is no no, we skip it.

2.2.3. Writing an 1 f statement
We can write an 1 f statement to make the decision in the orange diamond of the flowchart.

from microbit import *

if button_a.is_pressed():
display.show(Image.DUCK)

Try running this program and then pressing Button A.
Why doesn't it work? Because the code runs too fast — the program ends before we can press the button!
We need to keep checking whether the button is pressed...

Q Use your mouse or keyboard

Press the buttons in the examples by clicking with your mouse or pressing A or B on your keyboard.

2.2.4. Decisions inside a loop

We fix this by putting the i statement inside an infinite loop:
from microbit import *
while True:

if button_a.is_pressed():
display.show(Image.DUCK)

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

CHE éﬁit\::alllt?:g GROK DT Mini Challenge - Intro to micro:bit ' TSP{?B&NE%F

33

THE UNIVERSITY OF

diEsce: Computing GROK DT Mini Challenge - Intro to micro:bit SYDNEY

ae Academy LEARNING
n

The 1 f statement only runs display.show(Image.DUCK) if Button A is being pressed.
Because we don't clear the display, the image will stay after the first time we press the button.
Q Two levels of indentation
We put code inside the - f statement by indenting it 2 spaces.

We put the whole 1 f statement (including the code inside it) inside the whi le loop by indenting

another level (4 spaces).

2.2.5. Visualising control structures

Here's the program as a flowchart. Follow it and see how it will keep looping, whether or not the button is
pressed. The decision is inside the loop.

Is button
pressed?

Show image

Both while and - are called control structures, because they control the flow of the program. Our
flowcharts show them as orange diamonds where you go one of two ways based on the answer to a

question.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

34

THE UNIVERSITY OF

i ; Australiz-_m .. . s
="==="E§'= Computing Sg?l(c DT Mini Challenge - Intro to micro:bit SYDNEY
2.2.6. Problem: 3... 2... 1... GO! &=

Make a count down timer for starting races (quitely). On your marks, get set, GO!
Write a program that will scroll 3 2 1 G0! across the display when the A button is pressed.

Here's an example interaction with the program (you can't actually press the buttons yourself).

You'll need

program.py

I from microbit import *

Testing

O Checking that your code contains an infinite loop.

[0 Testing that the display starts off being blank.

O Testing that the display counts down when the A button is pressed.
[0 Testing that it went back to a blank screen afterwards.

O Testing that it continues to work multiple times.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

35

THE UNIVERSITY OF

i ; Australiz_in .. . s
i"“!"ii; Computing Sg?l(c DT Mini Challenge - Intro to micro:bit SYDNEY
2.2.7. Problem: Duck pet vs Rabbit pet B

Is it a duck pet or a rabbit pet?

Write a program that if the A button is pressed, shows a duck (Image.DUCK). And if the B button is pressed,
shows a rabbit (Image .RABBIT).

You'll have to use two - f statements for this one!

Here's a demo:

You'll need

program.py

I from microbit import *

Testing

O Checking that your code contains an infinite loop.

(0 Testing that the display starts off blank.

[0 Testing that it shows a duck when the A button is pressed.

(O Testing that it shows a rabbit when the B button is pressed.

[0 Testing that it shows a duck then a rabbit when the A button then the B button is pressed.

(O Testing that it continues to work multiple times.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

36

i i compns 9 GROK DT Mini Challenge - Intro to micro:bit N

=mm Academy LEARNING
n

2.3. Decisions with two options

2.3.1. Decisions with two options
Often when we make a decision, we care about both answers.

When we ask "Is the button pressed?", we might want to show an image if the answer is yes, and clear the
display if the answer is no.

Is button
pressed?

Y

Show image Clear display

2.3.2. Writing an i f-else statement
We handle decisions with two options by adding an else clause to our 1 f statement.

from microbit import x*

while True:
if button_a.is_pressed():
display.show(Image.DUCK)
else:
display.clear()

Q Indentation strikes again!

Just like with the 1 f statement, we indent the code we want to put inside the else clause.

if and else keywords are on the same level of indentation, because they're two outcomes of the
same decision.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

37

] ; Australiz_in . e _ . e THE UNIVERSITY OF
=--==='-E§-= Compuing Sg?l(c DT Mini Challenge - Intro to micro:bit SYDNEY
2.3.3. Problem: Smile for the camera! &=

Smile for the camera! Write a program that shows a happy face (Image.HAPPY) while Button A is pressed
(and the photo is being taken), and a sad face (Image . SAD) while the button is released.

Here's an example interaction with the program (you can't actually press the buttons yourself).

You'll need

program.py

I from microbit import *

Testing

[0 Checking that your code contains an infinite loop.

[J Testing that the display starts off showing a sad face.

[0 Testing that it becomes happy when the button is pressed.

[J Testing that it went back to a sad face after the button was released.

[0 Testing that holding down the button keeps the happy face on the screen.

O Testing that it continues to work multiple times.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 38

Australian THE UNIVERSITY OF

=EE='E§= Computing Sg?l(c DT Mini Challenge - Intro to micro:bit SYDNEY
2.3.4. Problem: Feed me! &=

Write a program that shows an open mouth (using Image . SURPRISED) if you "feed" the pet with the A
button.

You can use any animal stored in the micro:bit, for example the cow (Image.cow), but it will also work on
other animals.

Here's an example interaction with the program (you can't actually press the buttons yourself).

You'll need

program.py

I from microbit import *

Testing

O Checking that your code contains an infinite loop.

[0 Testing that the display starts off showing a pet.

O Testing that it opens its mouth when the button is pressed.

O Testing that it went back to a pet after the button was released.

O Testing that holding down the button keeps the mouth open on the screen.
O Testing that it continues to work multiple times.

O Nice work, you fed the pet!

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 39

Australian THE UNIVERSITY OF

L Computing Sg?l(c DT Mini Challenge - Intro to micro:bit SYDNEY

2.4. Making decisions with gestures

2.4.1. Accelerometer

The micro:bit has a built-in accelerometer (https:/en.wikipedia.org/wiki/Accelerometer) that measures
acceleration.

Lots of other devices you use contain accelerometers, including your phone, fitness tracker, and some
game controllers.

Using an accelerometer, you can detect which way the device is facing (e.g. screen orientation on your
phone). You can also detect movement where acceleration changes (such as vibration, shock, and falls).

2.4.2. Shake gesture

The microbit module represents the accelerometer as the object accelerometer. We can detect
gestures made with your micro:bit using the was_gesture method.

Run this program. Press the "Shake" button to shake the simulated micro:bit:

from microbit import *

while True:
if accelerometer.was_gesture('"shake'):
display.show(Image.ANGRY)
sleep(500)
display.clear()

Shake

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 40

THE UNIVERSITY OF

o , Australian . e _ B i
="==="E§'= Computing Sg?l(c DT Mini Challenge - Intro to micro:bit SYDNEY
2.4.3. Problem: Shake it off &=

Haters gonna hate! Shake off those angry feelings!

Show an angry face (Image.ANGRY) if nothing is happening. But if the the micro:bit detects a shake gesture
then show a happy face (Image.HAPPY) for 2 seconds.

Here's an example interaction:

Shake

Q Shake it!

Like detecting a button press with button_a.is_pressed(), you can detect a shake of the micro:bit
by using accelerometer.was_gesture(""shake") inside of an i f statement

You'll need

program.py

I from microbit import *

Testing
O Testing that the display starts with an angry face.

[0 Testing that a happy face appears after shaking.

[Testing that an angry face appears after two seconds shaking.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

41

THE UNIVERSITY OF

o , Australian . e _ B i
="==="E§'= Computing Sg?l(c DT Mini Challenge - Intro to micro:bit SYDNEY
2.4.4. Problem: Giraffe sleeps standing B

In order to avoid predators, griaffes sleep standing up. Your pet giraffe doesn't need to worry about
predators, because she sleeps standing!

Write a program that shows a giraffe (Image . GIRAFFE) normally, you make the up gesture shows
(Image.ASLEEP) for 3 seconds.

Here's an example interaction:

You'll need

program.py

I from microbit import *

Testing

O Testing that the display starts with a giraffe.

O Testing that the image is the giraffe after an up gesture.
O Testing that giraffe appears again after 3 seconds.

[Testing that it works repeatedly.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 42

iEE,_..': Computing GROK DT Mini Challenge - Intro to micro:bit g‘?ﬁ’ﬁﬁ%

- Academy LEARNING
.

2.5. More complex decisions

2.5.1. Decisions with multiple options

Decisions with multiple options need to ask more than one question. This flowchart covers three options:

1. Button A is pressed
2. Button B is pressed
3. Neither button is pressed

If the answer to "Is Button A pressed?" is no, we need to ask another question, "Is Button B pressed?"

Is
Button B
pressed?

Y

Show giraffe Clear display

2.5.2. Writing an i f-el1if-else statement
We can add an el f (abbreviation of else if) clause to make the extra decision in the flowchart.
e'lif clauses go after the i f statement and before the else clause, at the same level of indentation.

from microbit import *

while True:
if button_a.is_pressed():
display.show(Image.DUCK)
elif button_b.is_pressed():
display.show(Image.GIRAFFE)
else:
display.clear()

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

43

Australian "..-
SiREEES. Computing GROK DT Mini Challenge - Intro to micro:bit - TSP%E(UB'f\I“E{zF
IRTIER" Academy LEARNING N

Q Order matters!

What do you expect to happen when you press both buttons at the same time? Have a guess before
you try it out.

Python checks each statement from top to bottom and runs only the first statement where the answer
is yes.

This program checks whether Button A is pressed before it checks Button B, so it shows a duck when
both are pressed!

2.5.3. What if both buttons are pressed at once?
We can make a single decision based on multiple questions by using the and operator to join them.

This program only shows an image when both buttons are pressed at once. Use the A and B keys on your
keyboard to press both buttons at the same time.

from microbit import *

while True:
if button_a.is_pressed() and button_b.is_pressed():
display.show(Image.BUTTERFLY)
else:
display.clear()

2.5.4. Even more options

We can add multiple el f statements to cover even more options. The example below shows a different
image for:

e both buttons pressed

e only Button A pressed
e only Button B pressed
¢ neither button pressed

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 44

)
THE UNIVERSITY OF

Australian
& i GROK DT Mini Chall - Intro to micro:bit i
HH igszel:.:?g e ini allenge Nntro to micro:pi i SYDNEY

from microbit import *

while True:

if button_a.is_pressed() and button_b.is_pressed():
display.show(Image.BUTTERFLY)

elif button_a.is_pressed():
display.show(Image.DUCK)

elif button_b.is_pressed():
display.show(Image.GIRAFFE)

else:
display.show(Image.GHOST)

Q Order matters even more!
What happens if you swap the order of the statements so you check whether both buttons are
pressed after checking Button A by itself?

The program would show a duck even when both buttons are pressed.

Remember, Python checks each statement from top to bottom and runs only the first statement where

the answer is yes.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

45

u Australian ‘J‘ 2
SiREEES. Computing GROK DT Mini Challenge - Intro to micro:bit z TS“?]”S’E\I“E{?
IETRERT Academy LEARNING P

2.5.5. Problem: ATV controller =

Let's build a controller for an all-terrain vehicle (ATV) that uses caterpillar treads
(https:/en.wikipedia.org/wiki/Continuous_track) instead of wheels.

e 5

ulldozer

When both buttons are pressed, it drives forwards. If Button A is pressed, it turns left. If Button B is
pressed, it turns right. Otherwise, the vehicle doesn't move.

with caterpillar treads.

Write a program to draw an arrow on the display indicating the direction. The display should be blank
when not moving.

Here are the arrow images:

Name Direction Image
Image.ARROW_N forward = E .
-
Image.ARROW_E right al
EEEER
- n
Image . ARROW_W left .
EEEER
n
n

Q Remember!
Use the A and B keys on your keyboard to press both buttons at the same time.

You'll need

program.py

I from microbit import *

Testing

O Checking that your code contains an infinite loop.

O Testing that the display starts blank.

O Testing that the display shows the left arrow when the A button is pressed.
[0 Testing that the display goes blank again when A button is released.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 46

CHERE Computing GROK DT Mini Challenge - Intro to micro:bit

ae Academy LEARNING
n

O Testing that the display shows the right arrow when the B button is pressed.
O Testing that the display goes blank again when the B button is released.
O Testing that the display shows the up arrow when both buttons are pressed.
O Testing that the display goes blank again when the buttons are released.

(0 Testing none > A — A+B = B = none.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

SY

THE UNIVERSITY OF
DNEY

47

THE UNIVERSITY OF

o , Australian . e _ B i
="==="E§'= Computing S/&?E(G DT Mini Challenge - Intro to micro:bit SYDNEY
2.5.6. Problem: Feed me or pet me! =)

Let's add more interactions with our pet!

Write a program that shows an open mouth (using Image . SURPRISED) if you "feed" the pet with the A
button. Shows a smile face (with Image.HAPPY) if you "pat" the pet with the B button. And if you try to fed
and pat your pet at the same time it will get angry (and show a Image.ANGRY) face!

Otherwise your program should just show a picture of your pet.

Here's an example interaction with the program, if your pet was a cow (Image . COW):

You'll need

program.py

I from microbit import *

Testing

(O Checking that your code contains an infinite loop.

O Testing that the display starts off showing a pet.

[Testing that the display shows an open mouth when the A button is pressed.

[J Testing that the display goes back to the pet again when A button is released.

(O Testing that the display shows a happy face when the B button is pressed.

[0 Testing that the display goes back to the pet again when B button is released.

[Testing that the display shows an angry face when both buttons are pressed.

[J Testing that the display goes back to the pet again when the buttons are released.
[0 Testing none - A - A+B — B = none.

[0 Well done! You can pet, feed and make your pet angry! Like a real one!

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 48

Australian

SsEs-==E Computing GROK

= =mm" Academy LEARNING
.

DT Mini Challenge - Intro to micro:bit

2.6. Summary

SY

THE UNIVERSITY OF
DNEY

2.6.1. Congratulations!

Fantastic work! You've just finished Module 2.

We learned about:

visualising programs as flowcharts

infinite wh-ile loops

buttons on the micro:bit

the accelerometer and gestures on the micro:bit

the difference between input and output

making simple decisions with 1 f statements

making decisions with two options with 1 f-else statements
making decisions with multiple options if-elif-else statements
making complex decisions with the and operator

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

49

iii,_.='= Computing GROK DT Mini Challenge - Intro to micro:bit g‘?ﬁ’ﬁﬁ?

- Academy LEARNING
.

VIRTUAL PET EXTENSIONS

3.1. More micro:bit

3.1.1. More micro:bit

You've already learned the main parts of programming a micro:bit.

e Output (the micro:bit display)
¢ Input (buttons and gestures)
o 1if/elif/else statements

e while loops

With these tools you can already build lots and lots of interesting projects!

But if you'd like to learn about more things you can do then you can try out this module for a quick sample
of some extra cool micro:bit features!

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 50

Australian "..-
SiREEES. Computing GROK DT Mini Challenge - Intro to micro:bit - TSP%E(UB'f\I“E{zF
RRTEERT Academy LEARNING N

3.2. DIY images

3.2.1. Image strings
So far, we've only used the built-in images from the Image class:

from microbit import *

display.show(Image.HAPPY)

Images can also described by strings. Here's a do it yourself HAPPY:

from microbit import *

SMILE = Image('00000:"
'09090: "'
'00000: "'
'90009:"'
109990: ")

display.show(SMILE)

SMILE = Image() creates an image and stores it in the constant variable SMILE. It can then be used like
any builtin image.

The strings represent the brightness of each pixel in the image:

e Each line is a row of the image and ends with a colon (:).
e Each number is the pixel brightness from o (off) to 9 (fully on).

If create an image without passing a string, e.g. SMILE = Image(), it creates a blank image, with all off the
pixels off.

3.2.2. DIY images

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 51

Australian 0=
SiREzszu Computing GROK DT Mini Challenge - Intro to micro:bit TSH?Bf\INE%F
. & Academy LEARNING

We can now create our own images (with varying brightness):

from microbit import *

FLAG = Image('50905:"
'05950: "
'99999:"'
'05950: "'
'50905: ')

display.show(FLAG)

Try making your own image!

We split the 5x5 image over five lines to make it easier to read, but you can combine them into one string.
The colon separates each row, so you can also leave the last one off:

from microbit import *

FLAG = Image('50905:05950:99999:05950:50905")
display.show(FLAG)

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 52

i i compns 9 GROK DT Mini Challenge - Intro to micro:bit N

=mm Academy LEARNING
n

3.2.3. Problem: | choose you! B

Nintendo's Pokemon games often start off with a choice between 3 different starting Pokemon.

Let's create three new pets to choose from for our virtual pet game! You must create your own pets, they
can be anything but they must all be different.

Make a program that shows a different custom made pet when the A+B buttons, A button, or B button is
pressed.

Q How do | use buttons again?

You can go back to the previous module if you've forgotten about how buttons and i f/elif/else
statments work.

Here's an example where you can choose between a mouse, cat or elephant:

If you wanted an example of a pet, the code for the mouse would look like this:

MOUSE = Image('00000:"'
'00060:"
'00007:"
'69909: "'
199990"')

You'll need

program.py

from microbit import *

PET1

Image('00000:"
'00000:"
'00000:"
'00000:"
'00000')

Image('00000:"
'00000:"
'00000:"
'00000:"'
'00000')

Image('00000:"
'00000:"
'00000:"
'00000:"'
'00000"')

PET2

PET3

Testing

53

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

Australian

§&&i-223 Computing GROK DT Mini Challenge - Intro to micro:bit

H
IETRERT Academy LEARNING
H

O Checking that your code contains an infinite loop.

[0 Testing that the display starts blank.

O Testing that the display shows a custom pet when the A button is pressed.

[0 Testing that the display shows a custom pet when the B button is pressed.

O Testing that the display shows a custom pet when the A and B buttons are pressed.
O Checking that all three of the pets have different images.

(0 Testing none > A - A+B — B.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

SY

THE UNIVERSITY OF
DNEY

54

Australian "..-
SiREEES. Computing GROK DT Mini Challenge - Intro to micro:bit - TSP%E(UB'f\I“E{zF
IRTIER" Academy LEARNING N

3.3. Shifting images

3.3.1. Shifting images
You can move images around on the screen by shifting them up, down, left and right.
Let's start with an image that's a single pixel in the middle of the screen and move it up to the top:

from microbit import *

START = Image('00000:00000:00900:00000:00000")
display.show(START)

sleep(1000)

display.show(START.shift_up(2))

shift_up takes the original image and returns a new one that's been shifted up by the number of rows
given as the argument.

shift_down, shift_left and shift_right work the same way:

from microbit import *

START = Image('00000:00000:00900:00000:00000')
display.show(START)

sleep(1000)

display.show(START.shift_left(2))

sleep(1000)

display.show(START.shift_right(2))

sleep(1000)

display.show(START.shift_down(2))

3.3.2. Shifting with a for loop

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

55

; Australiz-_m . . . e THE UNIVERSITY OF
- gg:rdzwg Sﬁ?!(c DT Mini Challenge - Intro to micro:bit SYDNEY

We can use a for loop to shift images one row/column at a time, to create an animation! For example, to
animate a ship sinking:

from microbit import *

SHIP = Image('00090:'
'09090:"'
'09090:"
'99999:"
109990: ")

for i in range(6):
display.show(SHIP.shift_down(i))
sleep(500)

Remember, range (6) counts from o to 5.

Using a for loop, we first show the original image shifted down by O pixels, then 1 pixel, then 2 pixels, up
to 5 pixels, where the ship is no longer on the display.

3.3.3. Unshifting with a for loop

Instead of shifting an image from its original position downwards, how do we shift an image upwards to its
original position?

This doesn't work the way we would like it to because it just moves the boat up off the display:

from microbit import x*

SHIP = Image('00090:'
'09090:"
'09090:"
'99999:"
199990:"')

for i in range(6):
display.show(SHIP.shift_up(i))
sleep(500)

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 56

Australian "..-
Siamzaaa Computing GROK DT Mini Challenge - Intro to micro:bit - TSP%E(UB'f\I“E{zF
RRTEERT Academy LEARNING N

This code does work the way we want it to because it starts shifting down a large amount and finishes
shifting down O places

from microbit import *

SHIP = Image('00090:'
'09090:"
'09090:"'
'99999:"
109990: ')

for i in reversed(range(6)):
display.show(SHIP.shift_down(i))
sleep(500)

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

57

] ; Australiz-_m . . _ . e THE UNIVERSITY OF
=--==='-E§-= Compuing Sg?l(c DT Mini Challenge - Intro to micro:bit SYDNEY
3.3.4. Problem: Jump! =)

Sometimes smiley faces are not enough to show how happy you are. So you might as well jump!

Write a program that first shows the kangaroo image we've provided. And then makes the kangaroo jump
when the A button is pressed.

To make the kangaroo jump:

e shift_up until it disappears off the display, with a pause of 50ms between each shift.
¢ And then do the reverse until the kangaroo is back where it started. See the example of reversed on
the previous slide.

Here's an example of how it should work:

You'll need

program.py

from microbit import x*

KANGAROO = Image('09009:"
199009: '
106990 '
100900 '
199000: ')

display.show(KANGAROO)

Testing

(0 Testing that you showed the kangaroo.

O Testing that your display shows the first frame of the jump.
[0 Testing that the first frame stays on the display for 50ms.

[0 Testing that the kangaroo jumps off the display.

(O Testing that the kangaroo falls back down.

O Testing that the kangaroo stays on the display after jumping.
[0 Testing that the kangaroo can jump two times in a row.

[0 Congrats! You can bounce better than the rest of them!

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 58

Australian "..-
SiREEES. Computing GROK DT Mini Challenge - Intro to micro:bit - TSP%E(UB'f\I“E{zF
RRTEERT Academy LEARNING N

3.4. Music

3.4.1. Connecting some headphones

The micro:bit has lots of built-in components like the LEDs, but it can do even more when we connect it to
other components.

Here we'll learn how to connect headphones to play music!
o)

When you see this button next to the micro:bit in our simulator, it means that the headphones (or speaker)
are connected and playing.

Q Hack your headphones!

If you have a real micro:bit, follow these instructions
(https:/www.microbit.co.uk/blocks/lessons/hack-your-headphones/activity) to play sound through
your headphones!

3.4.2. Playing music
Let's play a song with the micro:bit. Run this example (remember to turn your system sound on!):

from microbit import *
import music

music.play(music.BIRTHDAY)

3.4.3. The music module

In order to play music, we need to import the mus+ic module by adding the line:
I import music

The music module gives us:

e music.play to play sound;
¢ built-in tunes like music.BIRTHDAY which we can pass as an argument to music.play.

WEe'll provide the import music statement for problems that need it, but don't delete it!

Q Two separate imports!

Unfortunately, mus-ic is not part of the microbit module, and so it needs to be imported in a different

way.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 59

IPRTLEET Academy LEARNING
.

CHE Computing GROK DT Mini Challenge - Intro to micro:bit TS“?B’&“E{%F

3.4.4. Play a whole album
Here's the same program, but with different music:

from microbit import *
import music

music.play(music.ODE)

The music module provides lots of other built-in tunes you can use! Try them out by editing the example
above.

e music.DADADADUM
e music.ENTERTAINER
e music.PRELUDE

e music.ODE

e music.NYAN

e music.RINGTONE
e music.FUNK

e music.BLUES

e music.BIRTHDAY
e music.WEDDING

e music.FUNERAL

e music.PUNCHLINE
e music.PYTHON

e music.BADDY

e music.CHASE

e music.BA_DING

e music.WAWAWAWAA
e music.JUMP_UP

e music.JUMP_DOWN
e music.POWER_UP
e music.POWER_DOWN

3.4.5. Music takes time

Playing music makes the rest of the program wait. It's a bit like sleeping for the length of the song (except
that music is playing!)

In this example, the note (a quaver) won't show on the screen until after the whole song has played:
from microbit import *
import music
music.play(music.ENTERTAINER)
display.show(Image.MUSIC_QUAVER)

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 60

CHE Computing GROK DT Mini Challenge - Intro to micro:bit

m* Academy LEARNING

Put the display.show before the music.play, and run it again.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html

)
THE UNIVERSITY OF

SYDNEY

61

] . Australiz_in . . _ . e THE UNIVERSITY OF
=--==='-E§-= Compuing S/&?E(G DT Mini Challenge - Intro to micro:bit SYDNEY
3.4.6. Problem: Power up, power down =)

Write a program to interact with your virtual pet using sound.

The program should play mus+ic.POWER_UP, then show a happy face (Image.HAPPY) for two seconds,
before clearing the display with display.clear () and playing music.POWER_DOWN:

You'll need

program.py

from microbit import *
import music

Testing

O Testing that the micro:bit starts playing music.

[J Testing that it plays music.POWER_UP.

O Testing that it then shows the happy face.

O Testing that it shows the happy face for two seconds.
(O Testing that the display then goes blank.

O Testing that it plays music.POWER_DOWN at the end.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 62

Australian THE UNIVERSITY OF

=EE='E§= Computing Sg?l(c DT Mini Challenge - Intro to micro:bit SYDNEY
3.4.7. Problem: Sad trombone &=

A common sound effect is a Sad Trombone (https:/wompwompwomp.com/), which might be used when
someone almost scores a goal but misses. Or perhaps it could be played when you forget to feed a virtual
pet!

Write a program make your micro:bit play mus-ic.WAWAWAWAA (also known as "Sad Trombone") when Button
A is pressed.

Your program should also display the sad face (Image.SAD) while the sound is playing, then clear the
display afterwards.

Here's an example interaction:

You'll need

program.py

from microbit import *
import music

Testing

O Checking that your code contains an infinite loop.

[Testing that the micro:bit is initially not playing any sound.

[0 Testing that pressing button A starts playing music.

[0 Testing that pressing button A starts playing music.WAWAWAWAA.
[J Testing that it shows the sad face.

[0 Testing that the display clears after the sound finishes.

O Testing that it works repeatedly.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 63

Australian "..-
SiREEES. Computing GROK DT Mini Challenge - Intro to micro:bit - TSP%E(UB'f\I“E{zF
RRTEERT Academy LEARNING N

3.5. Random

3.5.1. Importing random

Playing Rock-paper-scissors (https:/en.wikipedia.org/wiki/Rock%E2%80%93paper®E2%80%93scissors)
against a program that always does the same thing would get boring very quickly.

Often when we create games, adding randomness makes them a lot more fun!

We can do that with the Python random module. Because it's a separate module (not just for the micro:bit),
we need to import it separately:

I import random

3.5.2. Choosing at random

The random module provides us with the function cho1ice, which randomly chooses an element from a
given sequence:

from microbit import *
import random

FACES = [Image.HAPPY, Image.ASLEEP, Image.SAD]

while True:
display.show(random.choice(FACES))
sleep(1000)

Run this program. Every second, random.choice (FACES) chooses and image from the list FACES to show.

Because it chooses randomly, the sequence is hard to guess. Sometimes a face repeats, but overall each
face is equally likely to be shown.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 64

CHE éﬁfrt\:aalllt?:g GROK DT Mini Challenge - Intro to micro:bit ' TSH?B%NE%F

H
IETRERT Academy LEARNING
H

3.5.3. Problem: Battle pets =)

Now that we can add randomness, let's play Rock-paper-scissors
(https:/en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors) but with virtual pets!.

We're going to play with a mouse, a cat and an elephant. The cat eats the mouse, the elephant stomps the
cat and the mouse scares the elephant!

If Button A has been pressed, scroll 321, then use random. choice to show one of the given pets (mouse,
cat or elephant) at random.

The marker will expect you to use random.choice. Remember that you need to pass a list to
random.choice

Here's an example interaction (which you can play against by using a micro:bit programmed with the
sample solution from the | choose you! problem):

You'll need

program.py

from microbit import *
import random

MOUSE = Image('00000:00060:00007:69909:99990")
CAT = Image('09009:99009:09909:09909:09990")
ELEPHANT = Image('09900:93999:89999:70909:60909")

Testing

O Checking that your code contains an infinite loop.

(O Testing that the display starts blank.

O Testing that something happens when you press A.

(0 Testing that 3 2 1 scrolls past after pressing A.

[J Testing that one of the mouse, cat or elephant is shown after 3 2 1.
[0 Testing that the mouse, cat or elephant image stays on the screen.
O Testing that you passed three items to random.choice().

O Testing that it shows the mouse correctly.

[J Testing that it shows the cat correctly.

[0 Testing that it shows the elephant correctly.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 65

H
IETRERT Academy LEARNING
H

CHE éﬁfrt\:aalllt?:g GROK DT Mini Challenge - Intro to micro:bit ' TSH?B%NE%F

3.6. Temperature

3.6.1. Numbers versus strings
When you try to scroll a number on the display, you get an error:

from microbit import *

count = 7
display.scroll(count)

Traceback (most recent call last):
File "__main__", line 4, in <module>
TypeError: can't convert 'int' object to str implicitly

display.scroll complains! It can only scroll strings (messages), and doesn't know what to do with
integers (whole numbers).

Python gives a TypeError because strings and integers are different types of information.

3.6.2. Converting numbers to strings
To fix this, we use the str function to turn an integer into a string:

from microbit import *

count = 7
display.scroll(str(count))

3.6.3. Reading the temperature

The micro:bit has a temperature sensor on the board. We can read it (in degrees Celsius
(https:/en.wikipedia.org/wiki/Celsius) or °C) by calling the temperature function.

This example scrolls the temperature (after converting to a string):
from microbit import *
while True:

the_temp = temperature()
display.scroll(str(the_temp))

Once the program is running, drag the arrow on the thermometer to change the simulated temperature:

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 66

Australian THE UNIVERSITY OF

L Computing Sg?l(c DT Mini Challenge - Intro to micro:bit SYDNEY

28°C

Don't forget the brackets after temperature. We need them to call the function even though it doesn't
have arguments, just like was_pressed().

3.6.4. The or operator

We've used the and operator to check whether two conditions are both True (e.g. whether both buttons
are pressed at once).

The or operator lets us run code when either condition is True:

¢ if the first condition is True; or
¢ if the second condition is True; or
o if they're both True.

Try out this program pressing just Button A, just Button B, and both buttons. When does the face show?

from microbit import *

while True:
if button_a.is_pressed() or button_b.is_pressed():
display.show(Image.HAPPY)
else:
display.clear()

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 67

] ; Australiz_in . . _ . e THE UNIVERSITY OF
=--==='-E§-= Compuing Sg?l(c DT Mini Challenge - Intro to micro:bit SYDNEY
3.6.5. Problem: Hatching Chicks B

Chicken eggs take about 21 days to hatch, but you have to keep them at the right temperature the whole
time. No more than 38°C and no less than 37°C.

Many egg. incubators (https:/en.wikipedia.org/wiki/Incubator (egg)) use embedded devices to check this.

Write a program that monitors the temperature. If it's less than 37°C or more than 38°C, play the note cé6
(4 beats long) on loop as an alarm, and scroll the temperature on the display.

Otherwise, if the temperature is safe, it should stop playing the alarm and display a happy face
(Image.HAPPY).

Remember you can set the temperature in the simulator (by dragging the arrow) to test your program.

Here's an example interaction with the program:

38°C

You'll need

program.py

from microbit import *
import music

Testing

O Checking that your code contains an infinite loop.

[0 Testing that something plays when the temperature is too low (25°C).

O Testing that the alarm tone plays when the temperature is too low (25°C).

[0 Testing that the alarm tone loops when the temperature is too low (25°C).

O Testing that your program scrolls a low temperature (28°C).

[Testing that a temperature of 37°C stops the alarm.

O Testing that a temperature of 37°C displays the happy face.

[0 Testing that a temperature of 38°C also stops the alarm and shows the happy face.
O Testing that unsafe temperatures close to safe temperatures trigger the alarm.

[Testing that your alarm holds up to multiple cycles of safe/unsafe temperatures.

https:/aca.edu.au/challenges/78-python-intro-to-microbit.html 68

