
DT Challenge

Sport + micro:bit
(Blockly)

1. Ge�ng started with micro:bit

2. Loops, bu�ons and music

3. Simple decisions and variables

4. Accelerometer and loops

5. Numbers and pixels

 (h�ps://crea�vecommons.org/licenses/by/4.0/)

The Australian Digital Technologies Challenges is an ini�a�ve of, and funded by the
Australian Government Department of Educa�on (h�ps://www.educa�on.gov.au/).

© Australian Government Department of Educa�on.

https://creativecommons.org/licenses/by/4.0/
https://www.education.gov.au/

1
GETTING STARTED WITH MICRO:BIT

1.1. Ge�ng started

1.1.1. Welcome!

Welcome to the Health and Physical Educa�on (HPE for short) micro:bit challenge!

Get ready for a fun challenge that will get you moving and cheering as we explore ways of being healthy
and involved in our sports community using the BBC micro:bit.

We will be coding using Blockly.

Blockly is a visual coding language, which means you will be able to drag and drop pieces of code to make
your projects.

Get ready.... Get set... Go! 🤯

1.1.2. BBC micro:bit

You will be learning to code one of these! This is a BBC micro:bit.

The BBC micro:bit (h�ps://www.microbit.co.uk/) is a �ny computer. You can program it with blocks .

https://www.microbit.co.uk/

The micro:bit has:

5 x 5 LEDs (light emi�ng diodes)
two bu�ons (A and B)
an accelerometer (to know which way is up)
a magnetometer (like a compass)
a temperature sensor
Bluetooth (to talk to other micro:bits and phones)
pins (gold pads along the bo�om) to connect to robots and electronics!

If you don't have a real micro:bit...

You can s�ll do this course! We have a simulator which works like a real micro:bit. You will see it as we
move along.

1.1.3. The goal

Over the course of this course (😉) you will learn everything you need to use your micro:bit in an egg and
spoon race as the egg AND the spoon. 🥚🥄❗

You will need to keep your micro:bit balanced so that the egg doesn't fall off as you race. Here is a video
that shows the "egg" (a single LED) moving around the micro:bit as it �lts.

Tilt too far and the egg falls off! 💀



The micro:bit egg and spoon in ac�on!

Ready to learn some code? Let's go! 😀😀

1.1.4. Hello, micro:bit!

It's �me to dive right in. Let's run your first program on the micro:bit!

There will be lots of examples as you work through the challenge.

You can run the code in the examples by clicking the 
Run

 bu�on.

It is in the in the top right hand corner of the example.

If you move the blocks around and want to reset them, you can. Us the 
Reset

 bu�on.

It's �me to run your first example! Follow the steps below.

0:00 / 0:07

Drag the image block into the hole in the show block.1.

Click  to run the program. It shows a happy face!2.

show

image Faces ▾ HAPPY ▾

1.1.5. Change the face!

The micro:bit uses 25 Light Emi�ng Diodes (LEDs) to display images, numbers, and le�ers.

We can display some different faces and give the micro:bit some more personality.😕😎☹ 🙂

Follow the steps below.

Drag the image block into the hole in the show block.1.

Change the image to anything other than HAPPY2.

 Run it to show your image!3.

show
image Faces ▾ HAPPY ▾

1.1.6. Problem: Happy micro:bit!

Let's get the micro:bit to show a smiley face.

Follow the steps to complete your first problem:

You'll need

Tes�ng

Tes�ng that the display is showing a happy face.

Congratula�ons, you've wri�en your first micro:bit program!

Join the blocks in the problem editor together.1.

Click the 
Run

 bu�on.2.

Click the 
Mark

 bu�on to Submit.3.

 program.blockly

show

image Faces ▾ HAPPY ▾

1.1.7. Downloading

If you have a micro:bit you can see your program in real life!

1. Click the 
Download

 bu�on. You will get a .hex file.

2. Plug your micro:bit into your computer using the USB cable.

3. Your micro:bit will show up in your list of files in your directory

4. Drag the .hex from the downloads folder onto the micro:bit folder in your directory.

5. Watch the yellow light on the micro:bit flash for a few seconds.

6. See your program on the micro:bit!

We have more detailed instruc�ons with pictures (h�ps://medium.com/p/b89�bac2552) on our blog.

https://medium.com/p/b89fbbac2552

1.2. Wri�ng micro:bit programs

1.2.1. More Images

Your micro:bit has loads of images pre-programmed. Not just smiley faces. It can show shapes, music
notes, arrows and animals!

You can change the category to find more images.

What animals can you find?🐍 What symbols can it show? 🔺⬛

You can play with this example to explore the different op�ons.

1.2.2. Block drawers

You will need an extra block to complete the next problem. The blocks are kept in drawers on the le� hand
side of the building space.

To add blocks to your screen, click on the micro:bit drawer.

Drag the blocks you want from the drawer onto the workspace, and you're done!

Change the category block below from Faces to anything else.1.

image Faces ▾ HAPPY ▾show

Dragging blocks from the drawer

1.2.3. Problem: Team colours

Your micro:bit is a member of their local soccer club bit:fc ⚽ ! They all wear red shirts to games. Use the
blocks you have learned to help it get ready.

We want to show a TSHIRT for your micro:bit to wear.

If you can't see all the op�ons, move your blocks around and try again.

Your micro:bit t-shirt will look like this (click  to play it):

You'll need

Tes�ng

Tes�ng that the display is showing a shirt.

Congratula�ons, your micro:bit looks great! 🎽💪

Click on micro:bit and drag the show block into the workspace.1.

Join the blocks together.2.

Change the Animals block to Other3.

Choose the TSHIRT4.


Run

 and 
Mark

 your program.5.

 program.blockly

image Animals ▾ BUTTERFLY ▾

1.2.4. Sports teams

Joining a sports club is a great way to stay ac�ve and healthy. And they keep you connected with your
community! Your school might have different sports teams. You might even have a local netball, tennis or
football club for your suburb.

Being part of a club means being part of a community which is great for your sense of health and
wellbeing.

Your micro:bit is a member of bit:fc, the local soccer club.

Their mascot is a rabbit called Bit Bunny 🐰.

1.2.5. Problem: My micro:bit mascot!

This is Phillie Phana�c. He is the mascot for the Philadelphia Phillies Major League Baseball team in
America.

He is here to inspire you because it's your turn to choose a mascot! You can choose any animal to be the
mascot for your own team!

Here's a snake mascot example:

Tes�ng

Tes�ng that the display is showing one of the seven animals.

Well done, you've made your own team mascot! 🦋🐮🦆🦒🐇🐍🐢

Get the show and image blocks and connect them.1.

Choose your mascot animal. It can be any animal.2.
Run your program and mark it!3.

1.3. Anima�on and Sleep

1.3.1. Showing 2 images

If we want to show more than one image using the micro:bit, how do we do that?

For example, if we want to make a micro:bit pedestrian crossing 🚦, we will need 2 images.

Symbols NO to tell people to stop 🛑 and wait

Other STICKFIGURE to tell people they can safely cross �🚶

The example below is trying to do this, but if we run the program we only see the STICKFIGURE.

It doesn't work! 😱

The micro:bit is really fast. It does show the NO image but only for a frac�on of a second. Much too
fast for us to see. We will learn how to fix this in the next slide.

1.3.2. The sleep block

We can stop the micro:bit going too fast using sleep . You set how long the micro:bit will sleep for in

milliseconds (ms).

There are 1000 milliseconds in 1 second.

Try it for yourself.1.



image Symbols ▾ NO ▾

image Other ▾ STICKFIGURE ▾show

show

Click  run.1.

Now, the Symbols NO shows for 2 seconds. Then Other STICKFIGURE shows.2.

image Symbols ▾ NO ▾

2000

image Other ▾ STICKFIGURE ▾show

sleep for ms

show

1.3.3. Problem: Wake up �me

It's �me to wake up!

Write a program that will:

show an ASLEEP face for three seconds

then show a SILLY face

We have started the code for you. Now you need to follow the steps.

Here's an example:

You'll need

Tes�ng

Tes�ng that the display starts with an asleep face.

Tes�ng that the asleep face is s�ll on the screen less than 1 second later.

Tes�ng that the display changes to a silly face a�er 3 seconds.

Tes�ng that the silly face stays on the display for 1.5 seconds.

Congratula�ons! Your micro:bit is awake. 😋

Drag the extra blocks you need from the workspace.1.
Join the blocks together.2.

Change the sleep amount from 1000 to 3000 .

(1 second is 1000 milliseconds or ms. That means 3 seconds is 3000 ms.)

3.

Show the SILLY face a�er the sleep block.4.

 program.blockly

image Faces ▾ ASLEEP ▾

1000sleep for ms

show

1.3.4. Healthy hearts

We all want a healthy heart beat, and we can make a heart anima�on using the micro:bit. We use the

show and sleep blocks we have learned about.

Run the example below.

You can see how fast the micro:bit's heart is bea�ng! 😍

Measuring how fast your heart is bea�ng (your heart rate) is a good way to keep track of your health. A
healthy res�ng heart rate is between 60 and 100 beats per minute. ❤ ❤

1.3.5. Heart rate

You can measure your heart rate too! And you don't need a micro:bit to do it. 😉

Place two fingers on the side of your neck, under your ear or under your jaw. You should feel your heart
beat (pulse). Count how many �mes your heart beats in one minute. ⌚

Some smart devices measure heart rates using photoplethysmography (PPG for short). It is used in
hospitals but you can also find it on smart watches and some smartphones.

Your heart rate is a great way to check how hard your body is working while you exercise. It will also tell
you when you need to slow down! 🎵Listen to your heeaaart!🎵🎶

image Symbols ▾ HEART_SMALL ▾

500

image Symbols ▾ HEART ▾

500

image Symbols ▾ HEART_SMALL ▾

500

image Symbols ▾ HEART ▾show

sleep for ms

show

sleep for ms

show

sleep for ms

show

PPG measuring a heart rate on a smartphone. Source: Australian Compu�ng Academy

PPG works by flashing light onto your skin. It measures how much light reflects back. When your heart is
bea�ng fast 💓💓, less light comes back. When your heart is bea�ng slowly, more light comes back.

1.3.6. Problem: Duck, duck, ghost!

Let's get our hearts pumping with a bit of excercise! We are going to use the micro:bit to play Duck, Duck,
Ghost! 🦆 🦆 👻 It's like Duck, Duck, Goose... only spooookyyy.👻🕸💀

Use repea�ng show and sleep to play the game.

First show a Animals DUCK for 4 seconds.

Then show a Other GHOST for 1 second.

 Ac�vity!

When you are finished, download your program to your micro:bit. Sit everyone in a circle with one
person standing on the outside.

That person is the 👻 and holds the micro:bit. While it shows a 🦆, they walk around the circle,
tapping people to be ducks. When it changes to 👻, tap the next person and say "BOO!".

The person must jump up and try and catch the 👻 before the 👻 takes the spot in the circle. If they're
too slow, the person becomes the 👻. Use the reset bu�on on the back of the micro:bit to restart the
round.

Sleep for milliseconds

To sleep for a number of seconds just add three zeros!
For example:

sleep 2000 ms will sleep for 2 seconds

sleep 6000 ms will sleep for 6 seconds.

sleep 13000 ms will sleep for 13 seconds.

Drag in the right number of show and sleep blocks into the workspace.1.

Drag in your image blocks.2.

Select the correct images. If you can't see the ghost op�on, move your blocks down the screen
and try to select it again.

3.

Set the sleep �me so the delay between the images is correct.4.

Make sure all your blocks are connected.5.





Tes�ng

Tes�ng that the display starts with a duck.

Tes�ng that the duck is s�ll on the screen than 2 seconds later.

Tes�ng that the display is s�ll a duck a�er 4 seconds.

Tes�ng that the display changes to a ghost a�er 4 seconds.

Congratula�ons! Let's play!

1.4. Le�ers and words

1.4.1. Scrolling le�ers and words

Now that you know all about showing images with your micro:bit, we can start to show words.

We use scroll to show le�ers on the micro:bit.

Strings

In programming, words and le�ers are called strings. " I'm a string "

This is why you will find your green " string " blocks under the Strings drawer.



 run the example. "Hello" will scroll across the micro:bit.1.

Change " Hello " to your name.2.

 run the example again to scroll your name across the micro:bit!3.

" Hello "scroll

1.4.2. Problem: I ❤ soccer

Time to combine the sleep and " String " blocks.

Do you love soccer? Your micro:bit sure does!

Program the micro:bit to show everyone how much you love soccer. Make I ❤ soccer! scroll on the

LEDs.

Remember to 
Mark

 your program!

Your program should look like this:

Eeeeeeeek! 😱 My e looks too big!

Don't panic! It's not eeeevil!😈 Your micro:bit displays the e taller than the other le�ers because of
how the LEDs are arranged.

Have a play with the scroll using e and o and c. Try a y! The display does it's best but they don't always
end up the same height.

You can run your program as many �mes as you like before you mark. Make some fun signs! Show the
world what you ❤ !

Tes�ng

Tes�ng that an " I " scrolls past.

Tes�ng that a heart appears a�er the " I " .

Tes�ng that the heart stays on the display for 1 second.

Tes�ng that an " s " scrolls past.

Tes�ng that " soccer! " scrolls past.

Great work! I love soccer too!!! ⚽ 🥅😃🏆🎉

Scroll " I " on the micro:bit.1.

Show a HEART for 1 second.2.

Scroll " soccer! " .3.



1.5. Summary

1.5.1. Congratula�ons!

You finished Part 1!

We learned about:

the parts of the BBC micro:bit

how to show an image on the micro:bit

making the micro:bit wait with sleep

scrolling " strings " on the micro:bit

Click  to learn about making decisions with bu�ons and gestures.

Next step we start to get a bit loopy...😜



2
LOOPS, BUTTONS AND MUSIC

2.1. Looping forever

2.1.1. Introducing loops

So far, our programs run each step one �me.

Think back to the heart beat we played with before. It beat for a few seconds before it reached the end of
the program and stopped. We want our heart beat to go on ❤ and on ❤ and on ❤ and on ❤ ❤ ❤ ...

We can use a micro:bit loop to repeat the heart beat forever!

The heart can go forever!

Click 
Run

 run below.1.

Click the 
Stop

 bu�on.2.

If we go for a bike ride 🚴or play some basketball ⛹ our heart rate gets faster! Make the heart
beat faster by reducing the sleep �me.

3.

Run the program again!4.

image Symbols ▾ HEART ▾

500

image Symbols ▾ HEART_SMALL ▾

500sleep for ms

show

sleep for ms

show

micro:bit loop
do

2.1.2. Problem: Up, down, up, down

Have you ever had to do burpies in sports lessons? They are a good warm up exercise that help you stretch
safely to get you ready to play!

Jump in the air
Touch the ground
Stand up
Repeat again, and again, and again...

We will use our new micro:bit loop block to do as many burpies as we can.

Your program should:

Use the loop

You will need to add blocks inside the micro:bit loop to complete the problem.

Check out the example below. It will look like that, but will loop forever!

 Ac�vity!

Try doing burpies in �me with your micro:bit! If it's going too fast you can increase the sleep �me. If
you want a really tough challenge you can decrease the sleep �me. Good luck!

You'll need

Show ARROW_N for 1 second.1.
Show ARROW_S for 1 second.2.
Show STICKFIGURE for 1 second.3.
Loop this forever!4.





 program.blockly

micro:bit loop
do

Tes�ng

Tes�ng that the display starts with an up arrow.

Tes�ng that the display is s�ll showing an up arrow a�er less than a second.

Tes�ng that the display shows a down arrow for a second.

Tes�ng that the display shows a s�ck figure for a second.

Checking that your code contains an infinite loop.

Tes�ng that the display goes back to an up arrow for a second.

Tes�ng that the anima�on loops con�nuously.

Congratula�ons! That should get the heart rate up. ❤

2.1.3. Problem: Mascot parade

At the end of the annual micro:bit Athle�cs Carnival there is a parade of the winning mascots! 🎖🏆🎉

Prac�ce using your loop block again to create a mascot parade.

Program your micro:bit to show the 1st, 2nd, 3rd and 4th place mascots in order. Make it loop forever!

1. show each Animal image for 1 second. Make sure you show them in the correct order:

1. BUTTERFLY

2. COW

3. DUCK

4. GIRAFFE
2. And loop forever!

Don't forget

Your micro:bit should sleep for 1 second a�er the last animal to make sure you can see 👀 it.

Like this example (but your will loop forever):

You'll need

Tes�ng

Tes�ng that the display starts with a bu�erfly.

Tes�ng that the display is s�ll showing a bu�erfly a�er less than a second.

Tes�ng that the display shows a cow for a second.

Tes�ng that the display shows a duck for a second.

Tes�ng that the display shows a giraffe for a second.

Checking that your code contains an infinite loop.

Tes�ng that the display goes back to a bu�erfly for a second.

Tes�ng that the anima�on loops con�nuously.

Well done! You can loop forever!



 program.py

2.2. Making decisions with bu�ons

2.2.1. Making decisions

So far our programs only do one thing. A micro:bit has bu�ons that we can use to change that. When we
press a bu�on we are giving the program user input which can change what the program does.

For example, in this flowchart. An image is shown only if the bu�on is pressed.

This is how we make decisions in a program.

You make decisions all the �me in sports games. He is an example you might know.

2.2.2. Bu�on A and Bu�on B

The BBC micro:bit has two bu�ons.

One is A. The other one is B.

Is button
pressed?

Start

Show image

End

yes no

Did they
s c o r e ?

Start

C h e e r ! !

End

yes no

We can use button A is pressed and if to make decisions.

2.2.3. The if block

This is an if block.

If you try and press bu�on A on the micro:bit it doesn't work on its own! 😱😱

The New Loop

We need to put the if inside of the micro:bit loop .

 run the example below.
1.

button A ▾ is ▾ pressed

image Animals ▾ DUCK ▾show

if

do



2.

Use your mouse or keyboard

Press the bu�ons in the examples by clicking with your mouse or pressing A or B on your keyboard.

2.2.4. Making decisions inside a loop

Without a loop, your micro:bit will only check if the bu�on was pressed once, then stop the program.

When you add a loop, the micro:bit will check if the bu�on was pressed over and over and over again
forever!

Here's a decision in a loop as a flowchart:

Follow this loop with your finger. You start at the purple circle. Then you enter the loop. If the bu�on is not
pressed, follow the loop back to the start. Then you start again.

 run the second example below.

button A ▾ is ▾ pressed

image Animals ▾ DUCK ▾show

if

do

micro:bit loop
do

Press the  bu�on.3.



loopStart

Is button
pressed?

Show image

yes no

If the bu�on is pressed you show the image. A�er you show the image, you go back into the loop. And
start again!

It goes on and on and on and on... Like our infinite loops before!

2.2.5. Problem: 3... 2... 1... GO!

On your marks, get set, GO!

Use your if block to make a count down �mer that starts if you press bu�on A.

Make sure you have an infinite loop checking if the bu�on is pressed.

Your program should:

1. If button A is pressed.

Scroll " 3 2 1 GO! "
2. Loop forever!

We have given you some blocks to start with. You will need to add your loop and check if the bu�on is
pressed.

Your micro:bit should run like this.

Run the code  and press bu�on A. (You can also press A on your keyboard.)

You'll need

Tes�ng

Checking that your code contains an infinite loop.

Tes�ng that the display starts off being blank.

 program.blockly

" 3 2 1 GO! "scroll

if

do

Tes�ng that the display counts down when the A bu�on is pressed.

Tes�ng that it went back to a blank screen a�erwards.

Tes�ng that it con�nues to work mul�ple �mes.

Congratula�ons! You are ge�ng loopy! 😵😵🎉

2.2.6. Problem: The fastest freezer

The micro:bit has 2 bu�ons, A and B. We can use both with 2 if blocks!

Let's use both bu�ons to make a micro:bit game called "The fastest freezer". ⛄

Your program should:

show a YES ✔ when button A is pressed

show a NO ❌ when button B is pressed.

YES and NO are found in the Symbols category.

Here is an example to help get you started. It will show a YES when A is pressed and a NO when B is
pressed.

Try running it. Don't forget to press the A and B bu�ons!

 Ac�vity!

When you are finished, download the code to your micro:bit. Choose someone to be in charge of the
micro:bit, everyone else is a dancer.

Dancers start dancing when the micro:bit is on "Go" ✔ ! When you see the micro:bit change to
"Stop"❌ you have to freeze!

The last dancer to freeze is out, if you lose balance you are also out. Keep going un�l you have one
winner! The fastest freezer! ⛄ ❄

You'll need



Tes�ng

Checking that your code contains an infinite loop.

Tes�ng that the display starts off blank.

Tes�ng that YES symbol ✔ shows when the A bu�on is pressed.

Tes�ng that a NO symbol ❌ shows when the B bu�on is pressed.

Tes�ng pressing A then pressing B work correctly.

Tes�ng that it con�nues to work mul�ple �mes.

 Yes! ✔ ✔ ✔ Nice work!

 program.blockly

if

do

if

do

2.3. Making Music

2.3.1. Connec�ng headphones

The micro:bit has lots of built-in components (another name for parts) like the LEDs. It can play music
through headphones, but you will need some extra parts.

Hack your headphones!

If you have a real micro:bit, follow these instruc�ons (h�ps://makecode.microbit.org/projects/hack-
your-headphones) to play sound through your headphones!
You will need a ba�ery pack!

From now on, when you see this bu�on next to the micro:bit in our simulator, it means that the

headphones (or speaker) are connected and playing.

If your computer has speakers it will play the music. You can plug your headphones 🎧 in and listen too.

Don't forget to turn on your computer's sound!🔊

2.3.2. Playing music

It's �me to play your first song! Run the example below!

If you can't hear anything, check that your sound is on!🔊

Here is another example. This �me you have to press bu�on A to play the song.

Try the different songs and sounds! Click on Entertainer so see more op�ons.





play song Entertainer ▾



https://makecode.microbit.org/projects/hack-your-headphones

2.3.3. Is pressed or was pressed?

So far you have only used button A is pressed to work your bu�ons. But it won't always give us the best

result.

For example, if we just want to play a song one �me through no ma�er how long we hold down the
bu�on. Try running these blocks. But make sure you hold down bu�on A

The music plays again and again and again and again... un�l you let go of the bu�on. 😫😫

This is when we use the was pressed op�on! Changing the is to was .

image Music ▾ MUSIC_QUAVERS ▾

button A ▾ was ▾ pressed

play song Entertainer ▾

if

do

show

micro:bit loop
do



image Music ▾ MUSIC_QUAVERS ▾

button A ▾ is ▾ pressed

play song Entertainer ▾

if

do

show

micro:bit loop
do



It means that the song will only play once, even if you hold down the bu�on! 😁

Try this example, and hold down bu�on A.

The song only plays once! Great! Let's put that into ac�on.👍

image Music ▾ MUSIC_QUAVERS ▾

button A ▾ was ▾ pressed

play song Entertainer ▾

if

do

show

micro:bit loop
do



2.3.4. Problem: Toe touch tester

Time to get everybody touching their toes! We will build a Musical Toe Touch Tester!🎵

When you are finished, download your code to your micro:bit. Put it face up on the floor by your feet.

Every �me you bend and touch bu�on B your micro:bit will give you a smile and sing you a song! It's a
good way to stretch!

Your program will need to:

start by showing a NO ❌ on the micro:bit

if button B was pressed show a FABULOUS face then play Power Up
use an infinite loop to go on forever

If you aren't sure where to start, check the examples on the previous slide.

Here is how your program should work 🔊🔊

Sound on a real micro:bit

Instruc�ons on how to hack your headphones can be found on our micro:bit cheatsheet
(h�ps://aca.edu.au/resources/microbit-cheatsheet-poster/microbit-cheatsheet.pdf)!

Here's a video if you want to see a real micro:bit with a speaker a�ached 🔊

How to use your toe touch tester.





0:00 / 0:03

https://aca.edu.au/resources/microbit-cheatsheet-poster/microbit-cheatsheet.pdf

Tes�ng

Checking that your code contains an infinite loop.

Tes�ng that the micro:bit is ini�ally not playing any sound.

Tes�ng that the micro:bit starts by showing a NO.

Tes�ng that pressing Bu�on B shows Fabulous .

Tes�ng that pressing Bu�on B starts playing Power Up .

Tes�ng that you used was pressed .

You can touch your toes!

2.4. Summary

2.4.1. Congratula�ons!

Fantas�c work! You made a 🎵Musical Toe Touch Tester!🎶

We learned about:

visualising decisions as flowcharts

a micro:bit loop that repeats forever

buttons on the micro:bit

simple decisions with if blocks

is pressed and was pressed ! You can do all this and more with your micro:bit!

Have fun! See you in the next module! 🤖😃

3
SIMPLE DECISIONS AND VARIABLES

3.1. Decisions with 2 op�ons

3.1.1. Decisions with two op�ons

When we make a decision, we have only been working on the 'yes' answers.

Was the bu�on pressed? Yes. Do something.

What if we want to do something if the bu�on is not pressed?

If we ask "Is the bu�on pressed?" we could:

Show an image if the answer is yes.
Hide the image if the answer is no.

Like in this flowchart:

3.1.2. The if/else block

For decisions with two op�ons we use the if/else block.

It lets us say what to do if something is pressed and if something is not pressed.

In the example below:

If bu�on A is pressed, we will show a duck

l o o pStart

yes

Is button
pressed?

Show image

yes no

Clear display

if bu�on A is not pressed, we will show a giraffe

You can see how this works in the example below.

 run the example below.1.

button A ▾ is ▾ pressed

image Animals ▾ DUCK ▾show

image Animals ▾ GIRAFFE ▾show

if

do

else

micro:bit loop
do

3.1.3. Problem: Smile for the camera!

Smile for the camera!

Write a program to show a happy face if button A is pressed, but otherwise show a sad face.

1. If button A is pressed

Show a HAPPY face 🙂
2. Else

Show a SAD face ☹

You will need to use the if/else block that you learned about in the last slide.

Here is what your micro:bit should do:

You will need to press button A !

Tes�ng

Checking that your code contains an infinite loop.

Tes�ng that the display starts off showing a sad face.

Tes�ng that it becomes happy when the bu�on is pressed.

Tes�ng that it went back to a sad face a�er the bu�on was released.

Tes�ng that holding down the bu�on keeps the happy face on the screen.

Tes�ng that it con�nues to work mul�ple �mes.

 Nice work! Ready for your close up! 📷😃🎉

3.2. More Complex Decisions

3.2.1. Use both bu�ons!

Play the example!

Press bu�on A... nothing happens.

Try pressing bu�on B... Nothing

Press both A and B at the same �me? Snake!! 🐍🐍

This is the and block!

Clear display?

The clear display block turns off all of the LEDs. It is a good way to reset your micro:bit while bu�ons
are not pressed.

3.2.2. The and block

The and block lets you define what happens when both bu�ons are pressed at the same �me.

You can also select the or op�on from the drop down! Using or you can define what happens when

either of the bu�ons are pressed.

For example, if bu�on A or bu�on B are pressed, I want to scroll " Hello! " .

button A ▾ is ▾ pressed button B ▾ is ▾ pressedand ▾

image Animals ▾ SNAKE ▾show

clear display

if

do

else

micro:bit loop
do



and ▾

button A ▾ is ▾ pressed button B ▾ is ▾ pressedor ▾

" Hello! "scroll

if

do

micro:bit loop
do

3.2.3. Problem: AND Smile for the camera!

Smile for the camera! Again!

Write a program to show a happy face if button A and button B are pressed at the same �me.

Otherwise show a sad face.

1. If button A and button B are pressed

Show a HAPPY face 🙂
2. Else

Show a SAD face ☹

You will need to use the if/else block and your and block.

Run the micro:bit below to see an example interac�on:

Use your keyboard to press bu�on A and B at the same �me.

Tes�ng

Checking that your code contains an infinite loop.

Tes�ng that the display starts off showing a sad face.

Tes�ng that it becomes happy when both bu�ons are pressed.

Tes�ng that it went back to a sad face a�er the bu�ons are released.

Tes�ng that holding down the bu�ons keeps the happy face on the screen.

Tes�ng that it con�nues to work mul�ple �mes.

 Fantas�c work! What a photo finish! 📷😉

3.2.4. The elif block

If we want, we can make the micro:bit do something if:

nothing is pressed
Bu�on B is pressed
Bu�on A is pressed
Both bu�ons are pressed

So many op�ons! 😱

We need another block if we want to make that many decisions. We can use else if

Here it is showing all sorts of animals. Can you make the face display?

if

do

else if

do

else if

do

else

button A ▾ is ▾ pressed button B ▾ is ▾ pressedand ▾

image Faces ▾ SILLY ▾show

button B ▾ is ▾ pressed

image Animals ▾ COW ▾show

button A ▾ is ▾ pressed

image Animals ▾ SNAKE ▾show

image Animals ▾ DUCK ▾show

if

do

else if

do

else if

do

else

micro:bit loop
do

3.2.5. Elif Decisions

Let's break down that example with the flow charts we have used before.

Follow the flow chart and the code together.

Order Ma�ers!

What happens if you swap the order of the if statements? Try swapping the block that check for
Bu�on A AND bu�on B for the statement that just checks bu�on A.

Does it s�ll work?

Are both
buttons
pressed?

Is
only button
A pressed?

Is
only button
B pressed?

Show silly face Show snake Show cow Show d

yes yesyes

else if else if else



button A ▾ is ▾ pressed button B ▾ is ▾ pressedand ▾

image Faces ▾ SILLY ▾show

button A ▾ is ▾ pressed

image Animals ▾ SNAKE ▾show

button B ▾ is ▾ pressed

image Animals ▾ COW ▾show

image Animals ▾ DUCK ▾show

if

do

else if

do

else if

do

else

micro:bit loop
do

3.2.6. Problem: Dance Dance Revolu�on

Have you heard of Dance Dance Revolu�on (h�ps://en.wikipedia.org/wiki/Dance_Dance_Revolu�on)
(DDR)? We are going to build a DDR micro:bit. 🕺💃

Write a program to draw an arrow on the display indica�ng the direc�on you should step. The display
should be blank when not moving.

Your program should:

If button A and button B are pressed, show a forward arrow

else if button B is pressed show a right arrow

else if button A is pressed show a le� arrow

else clear display

Here are the arrow images:

Name Direc�on Image

image Arrows ARROW_N forward

image Arrows ARROW_E right

image Arrows ARROW_W le�

Order Ma�ers!

Be careful what order you check the bu�ons. The order of your if statements ma�er. Check the
previous slide if you get stuck.

Here is your example micro:bit.

 Ac�vity!

Dancing is a great way to stay fit! You can use it to get your friends to dance to your favorite song
when you are finished. Every �me they see an arrow they have to move the correct way, then step
back to the center.

Tes�ng

Tes�ng that the display starts blank.

Tes�ng that the display shows the up arrow when both bu�ons are pressed.

Tes�ng that the display goes blank again when the bu�ons are released.





https://en.wikipedia.org/wiki/Dance_Dance_Revolution

Tes�ng that the display shows the le� arrow when the A bu�on is pressed.

Tes�ng that the display goes blank again when A bu�on is released.

Tes�ng that the display shows the right arrow when the B bu�on is pressed.

Tes�ng that the display goes blank again when the B bu�on is released.

Tes�ng none → A → A+B → B → none.

 Well done!! You did it! Code Code revolu�on! 💃🤖🕺🤖💃🤖🕺

3.3. Variables and �me

3.3.1. Variables

If you wanted your micro:bit to scroll a cheer for your favourite team, how would you do it?

Something like this?

That's a lot of typing!

We can save �me and typing by using a variable to save your cheer. That way we can use it again and

again without having to type it out.

This code scrolls the same messages but using a variable called cheer.

" We are the champions! "

" We are the champions! "

" That's right! "

" We are the champions! "scroll

scroll

scroll

scroll

" We are the champions! "

cheer ▾

cheer ▾

" That's right! "

cheer ▾scroll

scroll

scroll

scroll

set cheer ▾ to

3.3.2. Team variable!

Variable variables

Variables are called variables because the value inside them can change!

In this example, the variable is " bit:fc " .

If you change the team name stored in the variable, you will see the message change too.



Run the example below.1.
Change " bit:fc " to your favourite sports team.2.
Run the code again to see the new team name.3.

" bit:fc "

" Go "

team ▾

" Go! "scroll

scroll

scroll

set team ▾ to

3.3.3. Problem: Which way is the goal?

When teams are playing on fields, they usually swap goals a�er half �me. This is to help keep the game
fair.

We can build a micro:bit program to help the team remember which way the goal is. Just in case they
forget! 😵😜 We will need to use our new variables.

Your program should:

Set the variable called goal to ARROW_W

When you hold down button A

show the variable goal
Sleep for 500ms

then clear display

if button B was pressed , it's half-�me and you need to change goals!

Set the variable called goal to ARROW_E
now, when you press A you should see the new arrow.

loop forever

We have built your first variable. You will need to set the goal image and complete the problem.

Building Variables

To create a variable, open the variables tab and click create variable . You will need to give your

variable a name, then you will get blocks to use.

You'll need

Tes�ng

Tes�ng that your code contains an infinite loop.

Tes�ng that your code starts blank.



 program.blockly

micro:bit loop
do

set goal ▾ to

Tes�ng that you show a West arrow when bu�on A is pressed.

Tes�ng that you used is pressed for button A .

Tes�ng that your code changes to an East Arrow when bu�on B was pressed.

Tes�ng that your new arrow shows every �me you press Bu�on A.

Congratula�ons!🎉 You can use variables! 📣➡ ➡

3.3.4. Micro:bit �me

The micro:bit doesn't have a clock, so it can't tell the �me of day.

However, you can find out how long it's been running since it was last switched on or restarted by calling

running time . This func�on returns how long it's been running in milliseconds.

Try running the example below and wai�ng a few seconds. Then press A. The number that scrolls is the
�me your micro:bit has been running! Press A again, the number will have increased.

Look carefully at the example! Did you no�ce the new scroll number block? You need it to scroll the

running �me.

3.3.5. Measuring �me

We can use the running �me block to measure how long things take.

For example, we can measure how many milliseconds long the Entertainer song goes for.

We save the running �me at the start of the song. As the song plays the running �me keeps coun�ng up.
Then we save what the running �me is when the song finishes. Subtract the finish �me from the start �me
and you get the length of the song!

Run the code below to see the �me:

button A ▾ is ▾ pressed

running timescroll number

image Faces ▾ SILLY ▾show

if

do

else

micro:bit loop
do

running time

running time

end ▾ start ▾+ ▾scroll number

set end ▾ to

play song Entertainer ▾

set start ▾ to



3.3.6. Problem: Reac�on �me tester

How fast are your reac�on �mes?⌚ ? We will build a reac�on �me tester using the variable and running
�me blocks you just learned about.

Press bu�on A to start the game. Your micro:bit waits 3 seconds then shows you a diamond. As soon as
you see the diamond, press bu�on B! As fast as you can!

Your micro:bit will then show your reac�on �me in milliseconds. The smaller the number, the faster you
are!

To create a variable, open the Variables drawer and click on create variable . You will need to name the

variable and click ok. A�er that it will appear in your variables drawer.

When button A is pressed:

Show the NO symbol

Sleep for 3000 milliseconds

Set the running time in a variable called start

Then, show Symbols DIAMOND

When button B is pressed:

Set the running time in a variable called end

scroll the number you get from end - start

We have put out some of the blocks you will need.

Pressing B

If you play the example and press B straight away, what happens? Your micro:bit scrolls an error!

This is because you program the micro:bit to scroll a variable when B is pressed. If you press too early,
the variable doesn't exist yet! 😵 If this happens, just reset the micro:bit.

So no chea�ng!

You can play the reac�on �me game with this example:

You'll need



Tes�ng

Tes�ng that your code contains an infinite loop.

Tes�ng that the display starts blank.

Tes�ng that your display shows a NO a�er button A has been pressed.

Tes�ng that it holds NO for 3 seconds.

Tes�ng that your program shows a diamond.

Tes�ng that your code shows a diamond for a long �me.

Tes�ng that pressing B stops the �mer.

Tes�ng if you scroll the reac�on �me.

You're a �me lord! ⏳

 program.blockly

button A ▾ is ▾ pressed

button B ▾ is ▾ pressed

- ▾scroll number

if

do

if

do

micro:bit loop
do

running time

running time

3.4. Summary

3.4.1. Congratula�ons!

Congratula�ons! You have made your micro:bit into a reac�on �me tester.⏱

We learned about:

Using the if/else block

Using the elif block to make lots of decisions

All about Variables
Using the micro:bit to measure �me

Nice work!

4
ACCELEROMETER AND LOOPS

4.1. The Accelerometer

4.1.1. Welcome to Module 4

In this module we will start to bring together what we are learning into projects.

You will learn how to use the Accelerometer, some more loops, playing music on your micro:bit and more!

Let's get started!!

The project at the end of this module is the Milk Bo�le Challenge!

The goal of the challenge is to hold up a milk bo�le as long as your muscles can. You will program the
micro:bit so that you can put it on the bo�le and it will �me how long you can hold it up for. If you shake
too much or put the bo�le down, it will beep at you and show you your �me.

The milk bo�le challenge micro:bit.

This is an up close look at what your micro:bit will be doing. You press A and the program starts to check if
you shake, and shows a s�ckfigure. When the bo�le is shaken (because you have put it down or maybe
laughed too much 😛) then it scrolls your �me.

0:00 / 0:07

The milk bo�le challenge up close.

4.1.2. Accelerometer

The micro:bit has a built-in accelerometer (h�ps://en.wikipedia.org/wiki/Accelerometer) that measures
accelera�on.

Accelera�on is changes in speed (speeding up and slowing down) and direc�on (curving). It's not just going
faster!

Lots of other devices contain accelerometers, including smartphones 📱, fitness trackers, and some game
controllers 🎮.

Using an accelerometer, you can detect which way the device is facing (e.g. screen orienta�on on your
phone). 🔀🔁🔃⬆ ⬅

You can also detect movement where accelera�on changes ⏩⏩(such as shakes and falls).

4.1.3. Detec�ng Shakes

The Micro:bit detects different types of movement using the was gesture block. You can select which

gesture you would like to detect using the drop-down list.

This is an example of a program that uses the accelerometer block. Run it and click the shake bu�on.

You can use the accelerometer to make decisions. Use it inside of an if statement, in a similar way to the

bu�ons blocks.

0:00 / 0:09

was gesture shake ▾

image Faces ▾ HAPPY ▾show

if

do

micro:bit loop
do

https://en.wikipedia.org/wiki/Accelerometer

Shake

4.1.4. Problem: Try not to shake!

Time to try the was gesture block out!

Do you think you are balanced enough to walk 5 steps without shaking your micro:bit? Let's write a
program that you can use to check.

You will need to choose a the correct gesture op�on from the was gesture drop-down list.

Your program should:

Show a happy face on the microbit 🙂

If the micro:bit was gesture shake , show a skull 💀 for 1 second

Don't forget to loop forever

Here's an example for you to try. Shake it about!

Ac�vity!

When you are finished, you can download your code to a real micro:bit. See if you can walk 5 steps
holding your micro:bit without triggering the skull! 💀 A�er you have prac�ced, race your friends and
see if you can make it to the finish line without shaking!

You'll need

Tes�ng

Checking that your code contains an infinite loop.

Tes�ng that your code starts showing a happy face.

Tes�ng that your code stays happy if you do not shake.

Tes�ng that your micro:bit detects a shake.

Tes�ng that the display goes from happy to skull when the micro:bit detects a shake.

Tes�ng that you display the skull for 1 second

Congratula�ons! Good luck balancing your Micro:bit! 🤹🎉

Shake



 components.json

4.1.5. Problem: Look up!

Is your micro:bit scared of heights? Write a program that shows a surprised face on your microbit when it
goes up in the air!

This �me we will use the was gesture block and if do else block.

Your program should show a surprised face 😲 for 3 seconds a�er the micro:bit detects it went up.
Otherwise, show a happy face on the microbit 🙂

Here's an example for you to try. You will need to select 'up' from the drop-down. Try not to scare your
micro:bit too much. 😱😱

When you are finished, you can download your code to a real micro:bit.

You'll need

Tes�ng

Checking that your code contains an infinite loop.

Tes�ng that your code starts showing a happy face.

Tes�ng that your code stays happy if you do not move the micro:bit upwards.

Tes�ng that the display goes from happy to surprised when the micro:bit detects an upward movement.

Tes�ng that the display shows a surprised face for 3 seconds.

Tes�ng that your micro:bit goes back to a happy face.

Congratula�ons! Good luck balancing your Micro:bit!

none

 components.json

4.2. Loops within Loops

4.2.1. The repeat while loop

This is the repeat while loop.

It will repeat the do space while the condi�on is true. For example, this program will play the song "ba

ding" while it is true that bu�on A is pressed.

Let's take a closer look at the condi�on in this while loop.

The condi�on in this example is that it is true that Bu�on A is pressed.

We will look at more examples in the next slide.

repeat while

do

button A ▾ is ▾ pressed true ▾= ▾

play song Ba Ding ▾

repeat while

do

micro:bit loop
do





button A ▾ is ▾ pressed true ▾= ▾

4.2.2. Condi�ons

Here are some more examples of condi�ons. No�ce that they don't always use the and block.

repeat while bu�on A is NOT pressed

If it is true that bu�on A is not pressed, the micro:bit will show a fabulous face 😎

If it is false that bu�on A is not pressed, the computer will skip the blocks inside the do space and show

a ghost 👻

Here are other examples of condi�on blocks by themselves.

repeat while bu�on A and bu�on B are pressed

repeat while the micro:bit has not been shaken

4.2.3. Condi�ons con�nued

Here is a list of some of the symbols from the = block and what they mean:

button A ▾ is ▾ pressed false ▾= ▾

image Faces ▾ FABULOUS ▾show

image Other ▾ GHOST ▾show

repeat while

do

micro:bit loop
do

button A ▾ is ▾ pressed button B ▾ is ▾ pressedand ▾repeat while

do

was gesture up ▾ false ▾= ▾repeat while

do

= ▾

Symbol Meaning

= equals

≠ does not equal

< less than

≤ less than or equal to

> Greater than

≥
greater than or equal
to

4.2.4. Problem: What is the condi�on?

What condi�on must be true for Boo to scroll?

Tes�ng

That's right!

button B ▾ is ▾ pressed false ▾= ▾

" Boo "scroll

image Other ▾ GHOST ▾show

repeat while

do

micro:bit loop
do

Bu�on B is pressed

Bu�on B is NOT be pressed

A ghost must be showing

No bu�ons must be pressed

4.2.5. When the loop ends

When a loop ends, the program moves on to the next blocks in the sequence.

This example will loop and show a duck while bu�on A is not pressed.

When bu�on A is pressed, the loop will end and the micro:bit will move onto the next blocks.

It will show a cow for 2 seconds and then the screen clears.

button A ▾ is ▾ pressed false ▾= ▾

image Animals ▾ DUCK ▾show

image Animals ▾ COW ▾

2000

clear display

sleep for ms

show

repeat while

do

4.2.6. Problem: What is checked?

What will happen when bu�on B is pressed?

Tes�ng

That's right!

button A ▾ was ▾ pressed false ▾= ▾

image Symbols ▾ HEART ▾show

clear display

play song Power Down ▾

repeat while

do

Nothing will happen.

Power Down will play.

Power Down will play and then the screen will clear.

The screen will clear.

4.2.7. Problem: What about now?

What will happen when bu�on A is pressed?

Check the blocks and make sure you read the ques�on carefully.

Tes�ng

That's right!

button A ▾ was ▾ pressed false ▾= ▾

image Symbols ▾ HEART ▾show

clear display

play song Power Down ▾

repeat while

do

Nothing will happen.

Power Down will play.

Power Down will play and then the screen will clear.

The screen will clear.

4.2.8. Is pressed? Was pressed?

Do you remember the difference between is pressed and was pressed ?

If you want to make sure your condi�on is checked at the start of each loop, you must use was pressed .

This is because is pressed only checks if the condi�on is met for a split second! If you aren't pressing A

in that �ny moment, your program is going to miss it!

Try tapping bu�on A in this example. Some�mes the program no�ces. Some�mes it does not.

Change is pressed to was pressed and try again.

Now your program remembers if the bu�on was pressed !

4.2.9. Before and a�er the loop

You can have blocks before and a�er your repeat while blocks if you want.

The program will run the blocks in order from to pto bo�om (as long as it isn't going around in a loop). In
the example below, we are waking up a sleepy micro:bit.

Once you press button A to wake the micro:bit up, it will show a MEH face un�l you shake it!

Then it will show the SURPRISED face for 1 second, before falling to sleep again.

button A ▾ is ▾ pressed false ▾= ▾

image Symbols ▾ HEART ▾

1000

image Symbols ▾ HEART_SMALL ▾

1000sleep for ms

show

sleep for ms

show

image Symbols ▾ SQUARE ▾show

repeat while

do

image Faces ▾ ASLEEP ▾

button A ▾ is ▾ pressed

was gesture shake ▾ false ▾= ▾

image Faces ▾ MEH ▾show

image Faces ▾ SURPRISED ▾

1000sleep for ms

show

repeat while

do

if

do

show

micro:bit loop
do

Shake

4.2.10. Problem: Try not to shake on repeat!

We are going to give our "Try not to shake" game an upgrade! You will program your micro:bit to detect if
you shake while you try and run a race!

Press button A to start the game, and when it's started you should show a FABULOUS face.

A�er was gesture shake happens, show a SKULL 💀, then play Punchline .

Press button A to start the game again.

Here's an example for you to try. Press bu�on A to start the game and to reset the micro:bit if you shake.

When you are finished, you can download your code to a real micro:bit and test your balance.

Hint!

The repeat while block could be useful if you want to wait un�l something happens.

You'll need

Tes�ng

Checking that your code contains an infinite loop.

Tes�ng that your code starts blank.

Tes�ng that the display does nothing if bu�on B is pressed.

Tes�ng that your code shows a fabulous face when you press A.

Tes�ng that your micro:bit s�ll a fabulous face if no bu�on is pressed.

Tes�ng that your micro:bit shows a different face a�er being shaken.

Tes�ng that your micro:bit shows a skull when shaken.

Tes�ng that your micro:bit plays punchline when shaken.

Nice work!! 🎊🎉😃

Shake 



 components.json

4.3. Musical Notes

4.3.1. Musical Notes

We have already learned how to play songs. The micro:bit can also play individual notes. 🎵

The micro:bit can play all twelve notes of the chroma�c scale (C, C# or Db, D, D# or Eb, E, F, F# or Gb, G,
G# or Ab, A, A# or Bb).

Try this example:

4.3.2. Detailed musical notes

Each micro:bit note also has an octave. The octave of a note is the pitch, the higher the number means the
higher the pitch.

You can program what octave the note is played in by typing " (note)(octave) " .

For example, to play the note D, in the 5th octave: " D5 " .

The micro:bit default octave is 4. That means that any note without a specific number next to it will

automa�cally be played like it has a 4. For example, " F# " will play the same sound as " F#4 " .

You can hear the difference that octaves make in this example:

" C "

" D "

" E "

" F "

" G "

" A "

" B "play note

play note

play note

play note

play note

play note

play note



Guidelines

Octave values can be from 0-9

The notes of the chroma�c scale (that you rmicro:bit can play) are: C, C# or Db, D, D# or Eb, E, F, F#
or Gb, G, G# or Ab, A, A# or Bb.

" C1 "

" C2 "

" C3 "

" C4 "

" C5 "

" C6 "

" C7 "play note

play note

play note

play note

play note

play note

play note





4.3.3. Problem: Musical legs

We are going to use music notes to build a game to test your reflexes and your balance using the micro:bit!

While you're pressing a different bu�on, you should play a different note according to the following table:

Bu�on Note 🎵🎵

button A C in the 4th octave

button B F in the 6th octave

Here is an example to try:

 Ac�vity!

In pairs, one person will have control of the micro:bit, the other will stand in front of them, they are the
balancer.

To start the game, hold one micro:bit bu�on down. The balancer must li� one foot off the ground as
long as a note is playing. When the note changes, the balancer must swap feet!

The goal is to try and surprise the balancer with swaps and see how long they can hold their balance.
😝

When the balancing partner loses balance and has to put both feet on the ground, swap roles!

You'll need

Tes�ng

Tes�ng that your code contains an infinite loop.

Tes�ng that your micro:bit isn't playing sound when it starts.

Tes�ng that your micro:bit plays a sound when button A is pressed.

Tes�ng that your micro:bit plays C4 when button A is pressed.

Tes�ng that your micro:bit plays a sound when button B is pressed.

Tes�ng that your micro:bit plays F6 when button B is pressed.

Tes�ng that your micro:bit changes notes when different bu�ons are pressed.





 components.json

Tes�ng that you used is pressed .

Congratula�ons! You did it! Enjoy balancing 🎊🎉

4.4. Text and numbers in output

4.4.1. Scrolling text and numbers

Un�l now we have only scrolled text or numbers on the micro:bit. What if we want to scroll both? 🤷�

The example below looks right, but if you run it you will get an error! 🤦

The error says "Line 6 TypeError: can't convert 'int' object to str implicitly"

The micro:bit is trying to scroll numbers (the int) in the same way as it scrolls le�ers (the str) but it doesn't
know how 🙁.

You have to tell it to use different blocks to scroll different things.

Remember, numbers and strings are different things to computers (your micro:bit is a �ny computer
💻). You can't tell it to scroll a string and a number with the same blocks.

You will need to use scroll for strings and scroll number for numbers.

Run the example below, just to make sure it works! 😉

running time

" Time: "

runtime ▾scroll

scroll

set runtime ▾ to

running time

" Time: "

runtime ▾scroll number

scroll

set runtime ▾ to

Traceback (most recent call last):

 File "__main__", line 6, in <module>

TypeError: can't convert 'int' object to str implicitly

MicroPython v1.7-9-gbe020eb on 2016-09-14; micro:bit with nRF51822

Type "help()" for more information.

>>>

soft reboot

4.4.2. Problem: How to scroll both?

This program is almost complete. It is missing the blocks needed to scroll the final
message.

You need to scroll:

"You pressed A a�er"
then the run�me variable (which is a number)
"milliseconds".

What blocks to you need to add inside the do sec�on?

image Faces ▾ FABULOUS ▾

button A ▾ is ▾ pressed

running timeset runtime ▾ to

if

do

show

micro:bit loop
do

Tes�ng

That's right!

" You pressed A after "

runtime ▾

" milliseconds "scroll

scroll number

scroll

" You pressed A after "

1000

" milliseconds "scroll

scroll number

scroll

" You pressed A after "

" runtime "

" milliseconds "scroll

scroll

scroll

" You pressed A after "

runtime ▾

" milliseconds "scroll

scroll

scroll

4.5. Project Time!

4.5.1. Challenge �me!

It's �me for the milk bo�le challenge!

We are going to put your arms to the test! 💪💪

We want to see how long you can hold up a milk bo�le...🥛...Without shaking! 😲😲

This is what the challenge will look like if you have a real micro:bit to use.

The Milk bo�le challenge in ac�on!

You hold up the milk bo�le and press A. The micro:bit will show you a s�ckfigure symbol while you hold up
the bo�le for as long as you can. When you can't hold it anymore, the micro:bit will detect you shaking or
if you put the bo�le down. It will scroll how long you managed to hold up the bo�le for.

like this:

0:00 / 0:07

The micro:bit up close.

Let's do it!

0:00 / 0:09

4.5.2. Problem: Milk bo�le challenge!

We are going to write a program to test your strength! It is called the milk bo�le challenge, but you can use
it on lots of diffferent objects.

The idea is that you a�ach a micro:bit to a milk carton full of water, li� it up, then start the �mer. Hold it
up for as long as you can! When you shake or put it down the micro:bit will stop �ming and scroll how long
you held up the bo�le. It's a test of strength! 💪💪

Start the �mer when button A is pressed, then show the STICKFIGURE image un�l the shake gesture

occurs.

A�er a shake is detected, save the running time in a variable, play note " A4 " 🎵, then scroll number

the elapsed �me, followed by scrolling " ms " .

There are some blocks to get you started, you will need to add more.

Here's an example for you to try. You will need to press bu�on A to start the program.

You'll need

Tes�ng

Checking that your code contains an infinite loop.

Tes�ng that your micro:bit starts blank.

Tes�ng that your code shows a s�ckfigure when you press A.

Shake 

 program.blockly

+ ▾set time ▾ to

repeat while

do

if

do

 components.json

Tes�ng that your micro:bit keeps showing a s�ckfigure as long as you don't shake.

Tes�ng that the micro:bit plays the note " A4 " when it shakes.

Tes�ng that you scroll the reac�on �me when the micro:bit shakes.

Tes�ng that you scroll ms a�er the reac�on �me.

Congratula�ons! Such strong brain muscles! 🧠💪🧠💪

4.6. Congratula�ons!

4.6.1. Congratula�ons!

You did it! 🎉🎉 You can do the Milk Bo�le Challenge!💪

You also learned about:

The Accelerometer

The repeat while block and its loops

Condi�ons
Playing musical notes 🎵🎶
Scrolling words and numbers

Wow! 😃

Great work! Only one more module to go!

In the last module we are going to learn the final pieces we need to use a micro:bit in an egg and spoon
race! 🥚🥚🥚🍳

5
NUMBERS AND PIXELS

5.1. Micro:bit calculator!

5.1.1. The final module!

You have made it to the final module! Well done!🎉😀😎

In this module we will be learning the last pieces we need to build the egg and spoon race game.

We will work through some variable loops and learn to make the single LED 'egg'🥚 move around the
micro:bit. As well as how accelerometers can tell which way your micro:bit is facing.

Let's go❗ ❗

5.1.2. The maths Blocks

You have already done some maths using the running �me of your micro:bit. Did you know your micro:bit
is also a calculator! It can do lots of maths using the blocks in your numbers tab.

These are the mathema�cal operators you can use in your blocks and what they do:

+ - addi�on

- - subtrac�on

÷ - division

x - mul�plica�on

^ - to the power of

5.1.3. Using maths blocks

Don't forget!

Computers scroll numbers and le�ers differently so you must use the scroll number block to scroll the

answers to equa�ons.

Try this example think of a sum that you might need to do . You should change the numbers and
mathema�cal operators and see which numbers print out.



5.1.4. From milliseconds to seconds

You can use the mathema�cal operators to scroll milliseconds as seconds.

For example, rather than scroll 1500 milliseconds, we can scroll 1.5 seconds.

To do this, we need to divide the milliseconds by 1000.

The example below shows you how long the song Entertainer runs for in seconds. You can run the
example to see the run �me.

20 3× ▾scroll number

running time

running time

end ▾ start ▾- ▾ 1000÷ ▾

" seconds "scroll

scroll number

set end ▾ to

play song Entertainer ▾

set start ▾ to

micro:bit loop
do



5.2. Upda�ng variables

5.2.1. Using variables to do maths

Let's use some mathema�cal operators to work out how old we will be in 5, 10, 15 and 20 years.

You could type out your age over and over (😴), or you could store it in a variable and use it again and
again. Here is how:

Save your age in a variable (We have used 12 as an example, but you can change it if you want!):

Use that variable in an equa�on:

The long way to check every 5 years is to build it over and over like this:

It works. But it's long and boring! And it's going to take so many blocks to get to 100... 😴😴😴

5.2.2. Upda�ng variables

Instead, we can update the variable to the new number each �me.

12set age ▾ to

12

age ▾ 5+ ▾scroll number

set age ▾ to

12

age ▾ 5+ ▾

age ▾ 10+ ▾

age ▾ 15+ ▾

age ▾ 20+ ▾scroll number

scroll number

scroll number

scroll number

set age ▾ to

For an example age of 12. You store it in the variable age . Then we add 5 years and save the variable

again. Now, age will scroll as 17.

Here it is in blocks:

This shows you the value of the variable as each block runs:

Step Blocks Value of age

Store the original age in the
age variable

set age to 12 12

Add 5 years and save the
variable again.

set age to age + 5 age = (12 +5)

The new value of age is 17. age 17

12

age ▾ 5+ ▾

age ▾scroll number

set age ▾ to

set age ▾ to

5.2.3. Problem: Value of number

What is the value of the variable number at the start of the code?

What is the value of number at the end of the program?

Tes�ng

That's right!

12

10 10+ ▾

number ▾ 2÷ ▾

number ▾scroll number

set number ▾ to

set number ▾ to

set number ▾ to

Start: 12

End: 10

Start: 12

End: 12

Start: 10

End: 10

Start: 0

End: 6

5.2.4. Looping updates

If we want to keep adding 5 to age and scroll the number over and over, how should we do it? 🤔🤔

We could try and put a a loop around the variable update. Do you think it will work?

12 12 12 12 ... wait a minute! It's not going up! 😡

Let's figure out why in the next slide.

5.2.5. Variables out of loops

The problem is that we set age to 12 every �me we start the loop again. So whatever updates we have

made get reset.

Follow the code with the table below to see where the reset happens.

12

age ▾

age ▾ 5+ ▾set age ▾ to

scroll number

set age ▾ to

micro:bit loop
do

12

age ▾

age ▾ 5+ ▾set age ▾ to

scroll number

set age ▾ to

micro:bit loop
do

Step arithme�c Value of age

Set the original age set age to 12 12

scroll number age age 12

Add 5 years and save the
variable again.

set age to age + 5 (12 +5) = 17

Start the loop again set age to 12 12!! 😱😡

Let's fix it!

Move the first age block outside of the main micro:bit loop. We have added a notch into the loop for it

to fit into.

Run the code to see if that fixes our bug 🐛. (A bug is a word for a problem in the code)

Stop the reset!

To stop the age variable from rese�ng with each loop, you must start it outside of the main

micro:bit loop.

5.2.6. The new notch

To fix this we needed to move our very first variable outside of the micro:bit loop. This will stop the
variable from rese�ng every �me the loop runs.

We have upgraded your micro:bit loop so that you can a�ach variables to the outside. We added a special
notch for them!



micro:bit loop
do

Now this example is working! 😁 Give it a try!

12

age ▾

age ▾ 5+ ▾set age ▾ to

scroll number

micro:bit loop
do

set age ▾ to

5.2.7. Problem: 10 Push-ups please

We are going to use the looping method we just learned about to do 10 push-ups!

Every �me you do a push-up, press button A . When you have done 10 , the micro:bit will congratulate

you with a song! (Then you can do 10 more! 😉)

Your program should keep count of how many push ups you've done, and display the count using the

show number block. If the count reaches 10 the micro:bit should play the Power Up song, then

reset the count.

Show not scroll!

We have given you a new block! The show number block means the number doesn't move. Check out

the difference in the example below.

No 10?

Why don't you see the number 10 when you get to it? We are using the show number and it only has

space to fit one digit. 10 is made of 2 digits, "1" and "0". If we display it the micro:bit will have to flash
both. It's not very pre�y, so we have le� it out. You can always try it out in our code to see what we

mean. Try running show number 10 and seeing what the micro:bit does.

Here is the example micro:bit for this ques�on.

You'll need







Tes�ng

Tes�ng that your code contains an infinite loop.

Tes�ng that your micro:bit starts at 0.

Tes�ng that your micro:bit adds 1 on bu�on A.

Tes�ng that your micro:bit can count higher than 2.

Tes�ng that your micro:bit sings a�er reaching 10.

Tes�ng that your variable resets to 0 a�er you reach 10.

Congratula�ons! You did it!! Now drop and give me 20!💪💪

 program.blockly

if

do

else if

do

else

micro:bit loop
do

 components.json

5.3. Individual pixels

5.3.1. Using individual pixels

We have already seen lots of the pre-programmed images and symbols on your micro:bit. Those images
are made by turning specific LEDs on at the same �me.

We are going to give you a new block so that you can turn LEDs on one by one.

Tah Dah!📣📣 Here it is:

What do you think it will do when you run it...? What will happen if you change the first 2 numbers to 1
...?

5.3.2. Pixel parameters

Just like the music notes have different parameters (the octave of the note, for example), LEDs have
parameters too.

The first 2 numbers tell the micro:bit which LED to light up (more on that in the next slide).

The third number is the brightness level.

0 is off and 9 is the on at the brightest se�ng.

Run both of these examples. Can you see the difference in the brightness?

0 0 9set pixel (,) to

2 2 3set pixel (,) to

5.3.3. Pixel layout

The first 2 numbers are the loca�on coordinates of the pixel you want to turn on or off. The first number is
the x coordinate. The second number is the y coordinate.

This is a diagram that shows you the coordinates of each pixel. The top, le� pixel is in posi�on (0,0). The
bo�om right pixel is in posi�on (4,4).

Click on the LEDs on the micro:bit below. They will turn on 💡 and you will see what their coordinates are!

Count from zero!

Computer scien�sts start coun�ng from zero! That means that the coordinates of a pixel tell us how
far it is from the top-le� pixel.

5.3.4. Pixel pictures!

Want to give your happy face a nose? 👃

First, find which pixel should be the nose. Run this example so you can see the happy face. The nose
should go in the middle of the face.

2 2 9set pixel (,) to



BB

AA

(0, 0)(0, 0)

display.set_pixel(0, 0, 9)

Work out what coordinates the nose should be (x,y). Count x coordinate from the le� hand side. Count the
y coordinate from the top. Start at 0

You can also hover over the LEDs with your mouse and the coordinates will appear. Once you have your
coordinates, here are the blocks you need:

You show a happy face for 1 second, then turn on the nose, brightness level 9!💡

Try it! Run the code

Did you see the nose appear? 👀

5.3.5. Pixel pictures 2

Now let's try and make it wink at us. 😉 You have to turn a pixel off

Show the happy face for 1 second. Then, set the pixel that is the right eye 👁 to brightness 0.

Sleep for 1 second and turn the pixel back on (back to brightness 9) again!

Run the code and watch for the wink.

image Faces ▾ HAPPY ▾

1000

2 2 9set pixel (,) to

sleep for ms

show

🙂😉🙂

image Faces ▾ HAPPY ▾

1000

3 1 0

1000

3 1 9set pixel (,) to

sleep for ms

set pixel (,) to

sleep for ms

show

5.3.6. Problem: Broken heart

Oh no! The micro:bit loves you ❤ but you broke its heart! 💔😢

Write a program to show its broken heart.

A broken heart looks like a normal heart missing 2 pixels. Run the example below to see which 2 pixels you
need to turn off.

You will need to find the x and y coordinates of those 2 pixels, then remove them from a normal HEART
image.

Hint: set the brightness to zero

Start with the ❤ picture and turn off two pixels by se�ng them to brightness 0 .

You'll need

Tes�ng

Tes�ng that the display is showing a heart.

Tes�ng that the pixel at coordinate (2, 1) is set to 0.

Tes�ng that the pixel at coordinate (1, 2) is set to 0.

Well done! Hopefully the micro:bit can put it back together! 💔💔



 program.blockly

5.3.7. Store pixels in variables

We can use variables to move pixels using the bu�ons. Let's walk through this example.

First, we need a variable to save the x coordinate of the pixel we want to move. Set a variable called x to
be 0 (outside the loop).

Now we can use that variable block instead of a number block when we turn on the pixel.

Now we want to make the pixel move. We need to add the bu�on press.

When bu�on A was pressed, we should update the x variable to add 1.

Now our code turns on the pixel with the x coordinate. If bu�on A was pressed, it adds 1 to the x
coordinate. Then the loop restarts and we show the new pixel.

0set x ▾ to

x ▾ 0 9set pixel (,) to

micro:bit loop
do

0set x ▾ to

x ▾ 0 9

button A ▾ was ▾ pressed

x ▾ 1+ ▾set x ▾ to

if

do

set pixel (,) to

micro:bit loop
do

Not quite there yet!

If you run that code, each new pixel lights up and the old pixel stays on. We don't want to draw a line.
We want to move 1 pixel. We need to turn the old pixel off!

We do that in the next slide. 🛠

5.3.8. Store pixels in variables 2

The first thing we want to do if bu�on A was pressed is clear the old pixel. Use the clear display block.

Now our code stores the x coordinate variable. Then it turns on the correct pixel. If bu�on A was pressed
it clears the display. Then it adds 1 to our x coordinate, ge�ng ready to show the new pixel.

The loop restarts and the updated pixel coordinates are used to turn the new pixel.

Run this example and press A to move the pixel across the micro:bit.

A new problem!

What happens if you press bu�on A un�l the pixel goes over the edge of the micro:bit? You get an
error that tells you that the micro:bit can't display!

Let's fix that in the next slide. 🛠

5.3.9. Don't go over the edge

Our final step is to stop the pixel from going over the edge of the micro:bit.

In this example, we will make the pixel jump back to posi�on 0 when it gets to the edge.

You need to add an if/ else block.



0set x ▾ to

x ▾ 0 9

button A ▾ was ▾ pressed

x ▾ 1+ ▾set x ▾ to

clear display

if

do

set pixel (,) to

micro:bit loop
do



It will check if the pixel goes over the edge. If the pixel does go over, reset the x variable to 0. It is similar
to how we counted up to 10 push-ups then reset the count variable back to 0.

The if/ else block checks the pixel posi�on using a condi�on. Remember those? This condi�on is

x = 4 (the last valid pixel posi�on).

If x = 4, the pixel is going to go over the edge next �me we loop! We reset x to 0 to send it back to the
start of the micro:bit.

Else, the pixel isn't going to fall off and we can add 1 to the x value.

Woohoo! We did it! The pixel is zooming across the micro:bit!🏃🏃🎊🎉

0

x ▾ 0 9

button A ▾ was ▾ pressed

x ▾ 4= ▾

0set x ▾ to

x ▾ 1+ ▾set x ▾ to

if

do

else

clear display

if

do

set pixel (,) to

micro:bit loop
do

set x ▾ to

5.3.10. Problem: Take a pixel for a walk

Write a program that moves a pixel around your micro:bit as you press button A and button B .

It's an upgrade to moving the pixel across the micro:bit in the previous slides.

The pixel should start in the top le� hand corner of the screen. If you press button A , the pixel should

move to the right. If you press the button B it should move down. If it's about to go off the screen it

should loop back to the opposite edge! You can use the previous slides as a guide to help.

Make sure the pixel is at maximum (9) brightness!

Hint

In the last slide you needed to use one variable to track the x coordinate. How will you track both

the x and y coordinates?

Here is an example, press button A and button B to move the pixel around.

You'll need



Tes�ng

Tes�ng that your code contains an infinite loop.

Tes�ng that your pixel starts at the (0,0) posi�on.

checks for both is pressed and clearing the display in one. Also catches out of bounds value errors if
they've used 'is pressed'

Tes�ng that your micro:bit moves to the second correct x posi�on.

Tes�ng that your micro:bit resets the x axis.

Tes�ng that your micro:bit moves to the correct y posi�on.

Tes�ng that your micro:bit moves to the second correct y posi�on.

Tes�ng that your micro:bit resets the y axis.

Congratula�ons!! You did it! 🎊🎉🎊🎉

 program.blockly

9

= ▾

set x ▾ to

set x ▾ to

if

do

else

if

do

set pixel (,) to

micro:bit loop
do

set x ▾ to

 components.json

5.4. Accelerometer X and Y

5.4.1. Accelerometer X and Y (and Z!)

You have already used the accelerometer in your micro:bit. Remember checking for shakes? The
accelerometer works with X and Y coordinates too. It also has a Z coordinate! It uses them to see how far
the micro:bit has �lted in any direc�on.

In this diagram, you can see which axis is measuring which movements.

The different accelerometer axes.

For example, when you hold your micro:bit up to your face to see the LED's, it will register the Y axis
ge�ng larger. As you �lt it flat onto a desk, the Y axis gets smaller.

5.4.2. How accelerometers work

The axes register as 0 when the micro:bit is laid completely flat, and not moving. (except for Z, it's a special
case but you don't need to know much about it))

As the micro:bit �lts one way or another, axis values go up and down. For example, as you �lt the micro:bit
up to look at it, the Y axis values go up. If you �lt the micro:bit back down, the numbers go down.

The numbers can go into the nega�ves once they go past 0!

The diagram below will help you to get an idea. The numbers are an approximate guess for what your
micro:bit might read.

The Y axis in ac�on.

5.4.3. How to use them

You can get the specific measurements of each accelerometer axis by using this block and selec�ng the
axis you want.

The micro:bit below will scroll the value of the axis you choose. It is currently measuring the y axis. You
can change the angle of the micro:bit using the sliders and see how the numbers increase or decrease.

You can also use the accelerometer to make something happen when your micro:bit �lts a cer�an way.
This micro:bit will show a surprised face when it �lts too far back.

accelerometer y ▾

accelerometer y ▾scroll number

micro:bit loop
do

X 0

Y 0

Z -1024

accelerometer y ▾ 200> ▾

image Faces ▾ SURPRISED ▾show

image Faces ▾ ASLEEP ▾show

if

do

else

micro:bit loop
do

X 0

Y 0

Z -1024

5.4.4. Problem: Tilt

Let's use the accelerometer axis to make a balancing game! We will only measure the Y axis.

You should hold your micro:bit steady, if you �lt too far forward, it will use arrows to tell you to �lt back. If
you �lt too far backward, it will use arrows tell you to �lt up.

This should work according to the following table:

y value Image LED output

> 500 ARROW_S

< -500 ARROW_N

No �lt TARGET

Don't forget to loop forever!

Here is your example to try. Move the sliders about to �lt the micro:bit.

You'll need

Tes�ng

Checking that your code contains an infinite loop.

X 0

Y 0

Z -1024

 program.blockly

accelerometer x ▾ = ▾

accelerometer x ▾ = ▾

if

do

else if

do

else

micro:bit loop
do

 components.json

Tes�ng that your code shows a target when y=0 and x=0.

Tes�ng that you program shows a South arrow if y is set to 501.

Tes�ng that you program shows a North arrow if y is set to -501.

Tes�ng a target is shown when y is set to 500.

Tes�ng a target is shown when y is set to -500.

Tes�ng that your micro:bit shows a South arrow when y > 500.

Tes�ng that your micro:bit shows a North arrow when y < -500.

Tes�ng many different arrows.

 Hooray!! Good working using condi�ons!🎉👍

5.4.5. Problem: Tilt both ways

Upgrade your balancing game! Now you want to measure if the micro:bit �lts on the y axis and the x axis.

Your program should use both x and y accelerometers measurements and show the correct arrow, or the
target if there is no �l�ng.

accelerometer value Image LED output

y > 500 ARROW_S

y < -500 ARROW_N

x > 500 ARROW_E

x < -500 ARROW_W

No �lt Target

Don't forget to loop forever!

Here is your example to try:

Til�ng all around

Can you think of a way to �lt your micro:bit so that it is showing the wrong arrow?

If you �lt the micro:bit backwards AND to the le�, it can only show one arrow at a �me. How would
you fix this?

You can try to build a fix in the blockly playground at the end of this course!

You'll need

X 0

Y 0

Z -1024



Tes�ng

Checking that your code contains an infinite loop.

Tes�ng that your code shows a target when y=0 and x=0.

Tes�ng that you program shows a South arrow if y is set to 501.

Tes�ng a target is shown when y is set to 500.

Tes�ng that you program shows a North arrow if y is set to -501.

Tes�ng a target is shown when y is set to -500.

Tes�ng that you program shows a East arrow if x is set to 501.

Tes�ng a target is shown when x is set to 500.

Tes�ng that you program shows a West arrow if x is set to 501.

Tes�ng a target is shown when x is set to -500.

Tes�ng many different values.

 Great work! Til�ng every which way like a pro! 💪⬆ ⬇ ⬅ ➡ 👍

 program.blockly

if

do

else if

do

else if

do

else if

do

else

micro:bit loop
do

 components.json

5.5. Final project

5.5.1. Final project

Congratula�ons! You have made it to the final project!!🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉

It's �me to bring it all together and build an egg and spoon race micro:bit!

This is what you are building:

Egg and spoon micro:bit up close.

When you are finished, you will be able to use the micro:bit to run an egg and spoon race with your
friends.

Have you ever played an egg and spoon race? 🥚🥄

The goal is to run the race while holding an egg on a spoon. If you drop the egg 😬, you must start again.
It's a game of balance and speed. We will turn the mciro:bit into the egg and spoon. 🥚🥄If you �lt the
micro:bit too far you "egg" pixel will fall off and you will have to start again!

Ready? Let's go!

0:00 / 0:07

5.5.2. Problem: Egg and spoon race

You micro:bit will show you the "egg" using a pixel, as you �lt the micro:bit the "egg" will move around. Tilt
it too far and it will show a skull 💀 and you will have to start again!

We have given you some blocks to help you get started. We are bringing together lots of what you have
done before. You can do it! 💪🧠

Start by saving the x and y coordinates of your pixel "egg". The egg should start in the middle of the

micro:bit (2) and your variables should be outside of the main loop so that they don't reset.

Now it's �me to work inside the micro:bit loop. In one big condi�on at the top, check that the egg doesn't

go off any of the micro:bit sides. You should check that the coordinate variables are not out of the bounds
of the micro:bit. If any of those condi�ons are met (for example if egg_x = 5) then the egg has fallen off
and you show a skull for 2 seconds. it is important that you reset the coordinates back to the middle of
the micro:bit a�er showing the skull so that you can keep playing the game.

If the egg hasn't fallen off, clear the old pixel and show the pixel at your coordinate variables. You must
also sleep for 300 milliseconds. This will give you some �me to re-balance your micro:bit.

Now that we know the egg has not fallen off, we need to check if the micro:bit is �l�ng. If it �lts too far
we need to move the egg. 🥚

Tilt direc�on Condi�on Variable change

back > 200 y + 1

forward < -200 y -1

no �l�ng y -- y = y

right > 200 x + 1

le� < -200 x - 1

no �l�ng x -- x = x

All done!

Here is an example micro:bit that you can use to try the game out. When you are finished you can
download the code to a real micro:bit and race your eggs back and forth! 🥚🏃🏃

A�er you have marked:

If you want to make the game harder you can change the 200 in the if blocks to a smaller number. This will
make your micro:bit more sensi�ve to �l�ng and require more balance from you.

X 0

Y 0

Z -1024

You'll need

Tes�ng

Tes�ng that your code contains an infinite loop.

Tes�ng that your egg starts in the centre.

Tes�ng that your egg doesn't move without �lts.

Tes�ng that the egg stays when the �lts are small.

Tes�ng that the x variable increases when accelerometer x > 200.

Tes�ng that you clear the previous pixel.

Tes�ng that the x variable decreases when accelerometer x < -200.

Tes�ng that you clear the previous pixel.

Tes�ng that �l�ng too far right for too long shows a skull.

Tes�ng that the y variable increases when accelerometer y > 200.

Tes�ng that you clear the previous pixel.

Tes�ng that the y variable decreases when accelerometer y < -200.

 program.blockly

or ▾ or ▾or ▾

= ▾

= ▾

egg_x ▾set egg_x ▾ to

= ▾

= ▾

egg_y ▾set egg_y ▾ to

if

do

else if

do

else

if

do

else if

do

else

if

do

else

micro:bit loop
do

 components.json

Tes�ng that you clear the previous pixel.

Tes�ng that �l�ng too far back for too long shows a skull.

Tes�ng that �l�ng le� and right moves the egg both ways.

Tes�ng that your code resets a�er skull for 2 seconds.

 You did it!!!! You completely finished the challenge!! Hooray! 🎉🎉🎉🥚🥄😃

5.5.3. Congratula�ons!

Congratula�ons! You have finished the whole challenge!! 🏆

You have learned so much about using the micro:bit and some ways of keeping fit and prac�sing balance!
That's loads.

Here is a list of some of the things you can do:

Show images 🦆
Scroll words and numbers 🆒
Play music 🎼🎶
Play musical notes 🎵
Do maths ➕➖➗✖
Check running �mes 🏃
Balance micro:bits 🤹�
play an egg and spoon race using a micro:bit! 🥚🥄

Amazing work! Well done, and we hope to see you in another challenge soon! 🎉🎊



5.6. Blockly Playground

5.6.1. Problem: Blockly micro:bit Playground

This is a blockly playground! You can use the blocks to build whatever you like!

Here are a couple of project ideas to get you started:

3, 2, 1, egg run!

Add a " "3, 2, 1, Go!" " count down before you run you run and show you your �me when you finish.

You will need to press a bu�on to start the countdown before you start your egg and spoon code.

A�er you scroll " "3, 2, 1, Go!" " save the running �me in a variable.

when you finish the race, press a bu�on to scroll your �me using the calcula�ons from before

Count the push-ups!

Can you use the accelerometer to detect when you do a push-up?
Can you count to 10 push-ups then sing a song to congratulate yourself?

Save all the �mes

Use your micro:bit like a smart stopwatch! You can save the finish �me of runners as they finish, then scroll
all the �mes at the end. (We have already added the variables you will need for this problem)

This one is a bit tricky and requires you to use the list blocks

start by se�ng a variable called time to an empty list (this block [])

when you press bu�on A you start the stopwatch by saving the running �me
you should also show a happy face so you know the �mer has started.
every �me you press bu�on B it should save the finish �me (running �me - start, that you have done
before) to the list

then you need to append the finish �me variable to your �me list

then you should append " ms " to the sime so that yo can tell when one �me ends and the

other �me finishes.
when you press bu�on A and bu�on B at the same �me, you scroll what �mes you have saves in the
list.

To do that, use for each item i in times

In that do space you should scroll the number i

These are just sugges�ons! You can build your own micro:bit game and play with your friends!

Play stepping games, balancing game, speedy games and guessing games! Have fun!

Here is an example micro:bit for the save all the �me project.

You'll need

Tes�ng

This is a playground ques�on! There is no right or wrong!

 components.json

 program.blockly

