
NETWORKING WITH THE MICRO:BIT

WRITTEN BY
Cigdem Sengul

&
Anthony Kirby

© Nominet 2017

Authors: Cigdem Sengul and Anthony Kirby

https://microbit.nominetresearch.uk/networking-book/

 Nominet 2017

This work is made available under the Creative Commons Attribution-ShareAlike 4.0 International
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

In summary, you are free to:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material for any purpose, even commercially.

Under the following terms:

 Attribution — You must give appropriate credit, provide a link to the license, and indicate if
 changes were made. You may do so in any reasonable manner, but not in any way that
 suggests the licensor endorses you or your use.

 ShareAlike — If you remix, transform, or build upon the material, you must distribute your
 contributions under the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures that legally
 restrict others from doing anything the license permits.

Acknowledgements:

“BBC”, “micro:bit” and the micro:bit emojis are trademarks of the BBC

https://microbit.nominetresearch.uk/networking-book/
http://creativecommons.org/licenses/by-sa/4.0/

CONTENTS

Preface 8
About the book 8

About the authors 9

Acknowledgements 9

Resources & updates 9

Outline 9

1 Communication over Wires 11
1. Introduction 11

1.2 What you’ll need 11

1.3 Background 11

1.4 Programming: A Simple Heart Transfer 12

1.5 Task 1: Watch the “Simple Heart Transfer” 13

1.6 Task 2: Connect your micro:bits and test telegraph 13

1.7 Task 3: Test “Simple Heart Transfer” Hex files 14

1.8 Task 4: Program a heart transfer 14

1.9 Extended activity 15

1.10 Problems 15

1.11 Resources 15

2 Wireless and Broadcast Communication 17
2. Introduction 17

2.2 What you’ll need 17

2.3 Background 17

2.4 Programming: Receiving and sending broadcast messages 19

2.5 Task 1: Configure your radio 19

2.6 Task 2: Receive a broadcast message 20

2.7 Task 3: Send a broadcast message 20

2.8 Extended activity 21

2.9 Problems 21

2.10 Resources 21

3 Group communication 23
3. Introduction 23

3.2 What you’ll need 23

3.3 Background 23

3.4 Programming: Creating groups and messaging within groups 24

3.5 Task 1: Create groups 25

3.6 Task 2: Send and receive messages 25

3.7 Extended activity 25

3.8 Problems 25

3.9 Resources 26

4 Game 1: Shakey Donkey 28
4. Introduction 28

4.2 What you’ll need 28

4.3 Programming: Playing Shakey Donkey 28

4.4 Problems 30

5 Unicast communication: One to One 32
5. Introduction 32

5.2 What you’ll need 32

5.3 Background 32

5.4 Programming: Sending and receiving unicast messages 34

5.5 Task 1: Configure your radio 34

5.6 Task 2: Design your header 34

5.7 Task 3: Create your packet and send 35

5.8 Task 4: Receive a packet 35

5.9 Challenge: Filter senders 35

5.10 Extended activity 35

5.11Problems 36

5.12 Resources 36

6 Two-way unicast 38
6. Introduction 38

6.2 What you’ll need 38

6.3 Background 38

6.4 Programming: Ping 41

6.5 Task 1: Prepare for unicast 41

6.6 Task 2: Send a Ping 41

6.7 Task 3: Receive a Ping 41

6.8 Task 4: Receive a Pong and calculate round-trip-time 41

6.9 Exercises 41

6.10 Problems 42

6.11 Resources 42

7 Game 2: Rock, paper, scissors over the radio 44
7. Introduction 44

7.2 What you’ll need 45

7.3 Programming: Rock, paper, scissors 45

7.4 Task 1: Start with the simple game 45

7.5 Task 2: Hands over the radio with unicast 45

7.6 Task 3: Fill the table of rules 45

7.7 Task 4: Play the game 46

7.8 Exercises 47

7.9 Problems 47

7.10 Resources 47

8 Handling Errors: Retransmissions 49
8. Introduction 49

8.2 What you’ll need 49

8.3 Background 49

8.4 Programming: Retransmissions 51

8.5 Task 1: Create packet errors 51

8.6 Task 2: Send a sequence of messages 51

8.7 Task 3: Retransmit by default 52

8.8 Extended activity 52

8.9 Problems 53

8.10 Resources 53

9 Handling Errors: Acknowledgements 55
9. Introduction 55

9.2 What you’ll need 55

9.3 Background 55

9.4 Programming: Stop and Wait! 58

9.5 Task 1: Design your data and ACK packets 58

9.6 Task 2: Timeout and retransmission 58

9.7 Task 3: Testing the reliability of Stop-and-Wait 58

9.8 Extended activity 59

9.9 Problems 59

9.10 Resources 59

10 Game 3: Battleship over Radio 61
10. Introduction 61

10.2 What you’ll need 62

10.3 How the game works 62

10.4 A sample game 63

10.5 Programming: Battleship 64

10.6 Task 1: Initialization of the game 64

10.7 Task 2: Firing a shot 65

10.8 Task 3: Receiving a shot 65

10.9 Task 4: Receiving the shot result: “Hit” or “Miss” 65

10.10 Extended Activity 66

10.11 Problems 66

10.12 Resources 67

Index 70

8
NETWORKING WITH THE MICRO:BIT

PREFACE

About the book
This book presents a series of activities to teach the basics of computer networks. While you will not
learn all aspects of computer networking, we hope that it will serve as a good starting point.

To network micro:bits, we use custom micro:bit radio to radio communication. When one hears the
word radio, what comes to mind is the radio that blasts out tunes from your favourite radio broadcasting
channel. But, a radio, or a radio transceiver (transmitter/receiver), is used in communications to
generate and receive radio waves that contain information such as audio, video or digital data. And
all micro:bits have built-in radios1.

Each chapter presents interesting challenges in radio communications and networking with micro:bits.
After every few chapters, there’s an exciting game to look forward to! In the programming sections,
you will use the JavaScript Blocks Editor at https://makecode.microbit.org/ to develop solutions to
overcome those challenges2.

Writing this book, we have assumed no knowledge of radio communications or networking.

However, we assume that you have written programs with a micro:bit. For example, we expect that
you are familiar with variables, if-then-else statements, and loops. The activities in each chapter will
provide ample opportunity to put this knowledge into practice.

1The CPU on the micro:bit is a Nordic Semiconductor nRF51822 and contains a built-in 2.4GHz radio module. This radio can be configured to run Bluetooth Low Energy
(BLE) protocol but in this book, we will use the simpler micro:bit to micro:bit communication.

2This version of the book uses JavaScript Blocks Editor; we are also working on a MicroPython version.

Hello!

https://makecode.microbit.org/

9
PREFACE

About the authors
Cigdem and Anthony are researchers, which means we work on new ideas and products. We work
for a company called Nominet, which runs the part of the Internet that controls how names (like
www.bbc.co.uk) are used when people, computers, or devices like tablets or smartphones connect to
other computers over the Internet. We’re very excited to have the opportunity to work with micro:bits
and the Micro:bit Foundation.

Understanding how computers talk to each other is something that we think is important, which is why
we wrote this book! We’ve enjoyed designing the tasks and challenges in the book, and we hope you
do too.

Anthony & Cigdem

Acknowledgements:
- Thank you to the BBC and creators of the micro:bit, and to Zach Shelby and Jonny Austin
 of the Micro:bit Foundation for your support.

- Thank you to David Whale (@whaleygeek) for all your help and inspiration.

- Thank you to James Burgin and Anna Adolphson at Nominet, for help with the videos and
 graphical layout, and Alistair Braden for review & suggestions.

- Special thanks to Adam Leach, director of our research team at Nominet, for giving us the
 opportunity to work on this.

Resources & Updates
Updates to this book, alternative formats, and links to online versions are available at https://microbit.
nominetresearch.uk/networking-book/

Additional teaching resources (lesson plans for each chapter) will also be published here.

Outline
Communication over wires

This chapter is an introduction and a fun demonstration of networking. Micro:bits can communicate
when connected with wires. Via wires, you will send images between micro:bits.

Wireless and broadcast communication

You will start using radio communication in this chapter and learn about broadcast communication.
With broadcast communication, one micro:bit can send messages to many other micro:bits. But, be
cautious! If all micro:bits do that, it’s like everyone is speaking at once.

http://www.bbc.co.uk
https://microbit.nominetresearch.uk/networking-book/
https://microbit.nominetresearch.uk/networking-book/

10
NETWORKING WITH THE MICRO:BIT

Group communication

By forming small groups, you will send to and receive from a limited number of micro:bits. This is more
manageable than broadcast. But, selecting a unique identifier for your group will be an interesting
challenge.

Game 1: Shakey Donkey

This is a game that uses the micro:bit radio. See whether you can figure out how to play the game,
and how it works.

Unicast Communication

Broadcast and group communication are fun. But sometimes you want to talk to only one person.
This is called unicast communication. To do this, you discover that you will need a unique identifier
for your micro:bit.

Two-way Unicast

It’s no use talking with somebody if you don’t get a response back. In this chapter, you will program
your micro:bit to send a message and to get a reply. Also, you will work out how long it takes for a
reply to come back. Doing this, you will also program one of the most important tools used in the
Internet: Ping.

Game 2: Rock-Paper-Scissors over Radio

This is not like the traditional Rock-Paper-Scissors game. It works over the radio!

Handling errors: Retransmissions

Nothing is perfect, especially radio communication. What happens if your message gets lost on the
way? In this chapter, you will test methods for dealing with message loss. For instance, does it help if
you send your messages more than once? This is called a retransmission.

Handling errors: Acknowledgements

It’s a waste to retransmit if the other side already received the message! The receiver needs a
standard reply (or an acknowledgement) to avoid this. At the sending side, if you do not receive an
acknowledgement, you can assume that your message wasn’t received. In this chapter, you will test
how well acknowledgments work to improve reliability.

Game 3: Battleship over Radio

You have come far. Now you are ready for another classic game! You will write a version of the famous
Battleship game using your micro:bits. Your experience with radio communication and networking will
help you along the way.

Let’s start!

11

1. COMMUNICATION OVER WIRES

1.

1.3

1.2

Introduction
Everything is connected nowadays! Computers and devices connect to each other to form networks.
And these networks connect to form the Internet. When we say computers or devices, these can
be anything from a traditional laptop to a cellphone, to a washing machine, to a humidity sensor.
Of course, it can also be your micro:bit. More and more, the Internet is becoming an Internet of Things.

In this chapter, you will form your own network using wires to connect two micro:bits.
Doing this, you will learn:

• the concept of a communications medium, and signals
• the concept of binary and bit
• the concept of a network

What you’ll need?
• 2 micro:bits
• 4 crocodile clip leads
• 1 battery holder, and 2 AAA batteries
• 1 teammate

Background
For two micro:bits to be able to send messages to each other, they somehow need to be
connected,whether by wires or wirelessly - we call this a communications medium.

A message could be a string like “Hello”, a number like “9”, or an icon image. The micro:bits convert
each message to a signal to send it over the communications medium.

Definition 1. — Communications medium.
A communication medium is the physical path over which a signal is transmitted.

12
NETWORKING WITH THE MICRO:BIT

1.4

Definition 2. — Signal.
Signals are the electromagnetic voltages or waves transmitted on a physical wired or
wireless medium.

Definition 3. — Bit.
A bit is the smallest unit of data in a computer. It is like an atom. A bit
can be either a 1 or a 0.

Definition 4. — Network.
A computer network is a collection of computers or devices, which are connected to
communicate with each other. In a computer network, there are at least two computers.
Two or more networks can connect to form a larger network: a network of networks.
Internet is a massive network of networks!

Exercise 1.
What is the wireless physical medium that makes radio communication possible?

For example, take the case when we say “Hello” into a landline telephone. The telephone handset
converts the sounds into an electrical voltage signal. Then, this signal is transmitted to the receiving
telephone by wires; and at the receiver, it is converted back into sound.

Computers, and also your micro:bit, cannot process signals without converting them to binary data:
0s and 1s. Also, the binary data processed by computers need to be converted into signals before
they can travel a communication medium.

A group of 8 bits is a byte. Table 1 shows other example groupings. By connecting computers or any
device through different communications mediums, we create networks.

In this chapter, you will create a network of two micro:bits, connected via wires.

Programming: A Simple Heart Transfer
In this section, you will connect two micro:bits via wires. You will send a Heart icon from one micro:bit
to another. Figure 1.1 shows how a heart icon should look like on the micro:bit display 1. This activity is
best done with a teammate. In the following, you will go through four tasks to program your micro:bits.

Name

Byte (B)
Kilobyte (KB)

Megabyte (MB)
Gigabyte (GB)
Terabyte (TB)

8 bits
1024 bytes

1024 kilobytes
1024 megabytes
1024 gigabytes

Size

Table 1: Groupings of bits.

1This image is by micro:bit Educational Foundation at www.microbit.org

http:// www.microbit.org

13
CHAPTER 1. COMMUNICATION OVER WIRES

Task 1: Watch the “Simple Heart Transfer”
Description: We have created a video to show how your connections and program should work in
this activity.

See the video at https://microbit.nominetresearch.uk/networking-book/simple_heart_transfer.html

Instruction: Watch the Simple Heart Transfer in the video.

Important: Do not skip this task. It will help you to test whether the files you downloaded for
Task 2 work. It will also help you to write your program for this chapter.

1.5

1.6 Task 2: Connect your micro:bits and test telegraph
Description: You will connect your micro:bits using wires, and use a program to check the connections.
You can follow the instructions below, or there’s more detailed step-by-step instructions in the
micro:bit telegraph activity 2 on the micro:bit website.

Figure 1.1: Micro:bit displaying a heart icon.1

Figure 1.2: Wiring micro:bits. Two of the wires connect straight (3V→3V and GND→GND) but the other two cross over (1→2 and 2→1).

 2https://www.microbit.co.uk/td/lessons/telegraph/activity

Instruction: Using crocodile clips, connect the 3V pin between the two micro:bits, and connect the
GND pins. Then connect pin 1 on one micro:bit to pin 2, and vice-versa. Be careful to get the crocodile
clip connections right: two of the wires connect straight (3V→3V and GND→GND) but the other two
cross over (1→2 and 2→1).

See Figure 1.2 for an example, and look at the colours carefully (you don’t need to use the same
colours of course, but they must make the same connections).

https://microbit.nominetresearch.uk/networking-book/simple_heart_transfer.html
https://www.microbit.co.uk/td/lessons/telegraph/activity

14
NETWORKING WITH THE MICRO:BIT

Figure 1.3: Telegraph program. Pressing button A sends a signal to the other side using Pin 1. The receiver micro:bit listens on Pin 2
to check if a signal is received. If there is a signal, it lights up the (2,2) pixel on the display.

To test, use the program from Figure 1.3; press button A on each micro:bit and check that the LED
illuminates on the other one. You will use the blocks from the Pins menu. This menu is under Advanced.
Click on the More link to see all the options.

Task 3: Test “Simple Heart Transfer” Hex files
Description: We provide two files at https://microbit.nominetresearch.uk/networking-book/microbit1_
wired_simpleheart_secret.hex. and https://microbit.nominetresearch.uk/networking-book/microbit2_wired_
simpleheart_secret.hex for you to test how the final program should work. These files will run on your
micro:bits, but you will not be able to display the code using the JavaScript Blocks editor.

Instruction: Download the Simple Heart Transfer code into your micro:bits. There are two different hex files
for micro:bit 1 and micro:bit 2. Test the program by tilting your micro:bits and checking when the heart icon
is displayed.

Task 4: Program a heart transfer
Description: In this task, you will program your micro:bits to get a similar behaviour to what you
observed in the Tasks 2 and 3. To do this task, you will need to think about the following questions:

 1. Which input will the micro:bits react to in your program?

 2. How do the microbits send data to each other?

 3. Hint: Do you think they are sending each other an actual Heart icon?

Instruction: For question 1, look at the options under the JavaScript Blocks editor Input menu. For
question 2, use the example Telegraph program in the Figure 1.3. For question 3, here is another big hint.

Hint: Assume micro:bit 2 knows that it will be receiving a Heart icon from micro:bit 1.

1.7

1.8

https://microbit.nominetresearch.uk/networking-book/microbit1_wired_simpleheart_secret.hex
https://microbit.nominetresearch.uk/networking-book/microbit1_wired_simpleheart_secret.hex
https://microbit.nominetresearch.uk/networking-book/microbit2_wired_simpleheart_secret.hex
https://microbit.nominetresearch.uk/networking-book/microbit2_wired_simpleheart_secret.hex

15
CHAPTER 1. COMMUNICATION OVER WIRES

Program your micro:bit 1 so that:

 1. It displays a heart icon until it is tilted over the micro:bit 2.

 2. When tilted over micro:bit 2, it sends a pulse to micro:bit 2 over the correct pin.

 3. When micro:bit 1 receives a pulse on its correct pin, it displays a heart icon .

Program your micro:bit 2 so that:

 1. It displays a heart icon when it receives a pulse on its correct pin.

 2. When tilted over micro:bit 1, it sends a pulse to micro:bit 2 over the correct pin.

Extended activity 1.9

1.10

1.11

Exercise 2.
Watch the video at https://microbit.nominetresearch.uk/networking-book/pixel_
heart_transfer.html. Based on this video, discuss with your teammate how you can
send more complex data across wires. Make a proposal and discuss with others.

Exercise 3.
Watch the two videos under the Resources section. How are they related to your
activity? Discuss.

Problems
Problem 1.1 What is a bit?

Problem 1.2 How many bits are there in a kilobyte?

Problem 1.3 Explain the use of Ground (GND) and 3V pins in your micro:bit.

Problem 1.4 How many bits did you send to the receiver in your “Simple Heart Transfer” program?

Problem 1.5 How are the bits sent over the wire in your program?

Resources
• Video: What is the Internet (Code.org) - https://youtu.be/Dxcc6ycZ73M
• Video: The Internet: Wires, Cables andWifi (Code.org) - https://youtu.be/ZhEf7e4kopM
• BBC Bitesize, Introducing Binary - http://www.bbc.co.uk/education/guides/zwsbwmn/revision

https://microbit.nominetresearch.uk/networking-book/pixel_heart_transfer.html
https://microbit.nominetresearch.uk/networking-book/pixel_heart_transfer.html
https://youtu.be/Dxcc6ycZ73M
https://youtu.be/ZhEf7e4kopM
http://www.bbc.co.uk/education/guides/zwsbwmn/ revision

16
NETWORKING WITH THE MICRO:BIT

17

2. WIRELESS AND BROADCAST COMMUNICATION

Introduction
Wireless (radio) communication, for example WiFi and mobile phones, is a popular way to connect
to the Internet. In Chapter 1, you connected two micro:bits via wires. In this chapter, you will connect
your micro:bits using radios.

Doing this, you will not only learn how to use your micro:bit’s radio but also, broadcast communication.
Wireless communication is typically broadcast: one micro:bit can send messages to all micro:bits.
In summary, this chapter covers:

• wireless communication and how to configure the micro:bit radio
• the concept of broadcast and broadcast address
• receiving and sending different message types (for example, a number or a string) using
 broadcast

• when broadcast is useful, and when it isn’t

What you’ll need
• 2 micro:bits
• 2 battery holders, and 4 AAA batteries
• 1 teammate

Background
Wireless communication uses electromagnetic radiation - radio waves and microwaves - to send
information. Radio waves are essentially electromagnetic waves radiating from an antenna (like the
antennas of a WiFi router). So, wireless communication is always broadcast. In other words, the
signals from the WiFi routers can be heard by other WiFi devices tuned into the same radio frequency.

Read more about frequency in the Further Reading section at the end.

2.

2.2

2.3

18
NETWORKING WITH THE MICRO:BIT

Definition 1. — Broadcast.
In networking, broadcast communication means the message of a single sender is
transmitted to all receivers in a network.

Definition 2. — Broadcast address.
A broadcast address is a special address which says all devices in the network should
receive this message.

But, does this mean that broadcast is only possible with wireless communications? No, but it is more
cumbersome. For instance, in wired communication, broadcast is possible by repeating the same
message over all the wires.

Finally, receivers may refuse to receive broadcast messages if they are not labeled with a broadcast
address.

In a micro:bit, the broadcast address can be configured by setting the group ID of micro:bit’s radio.
All the micro:bits need to have the same group ID for the broadcast to work. You will experiment with
broadcasting with micro:bits in Section 2.3 .

Further Reading

Let’s look at wireless communication in a bit more detail. You already learned that radio waves
are essentially electromagnetic waves. Scientists have found that electromagnetic waves can be
arranged together on a scale called electromagnetic spectrum. Figure 2.1 shows the electromagnetic
spectrum, and the different electromagnetic waves a.

Figure 2.1: Electromagnetic spectrum.

One thing to notice in Figure 2.1 that radio waves are within the frequencies 30KHz and 300 GHz in
the electromagnetic spectrum. Radio waves include microwaves, which have frequencies between
300MHz and 300GHz. Radio waves travel fast - they move at the speed of light, which is around
300,000 km per second! Let’s define frequency more formally. The frequency of a wave is the number
of waves passing a point in one second. The unit of frequency is hertz (Hz). Like the examples above,
you will typically see that frequencies are given as megahertz (MHz) or gigahertz (GHz). 1 MHz is
equal to 1 million (106) Hz. 1 GHz is equal to 1 billion (109) Hz. Your micro:bit’s radio operates in the
frequency range of 2402 MHz to 2480 MHz. What other wireless technologies operate in the same
range as the micro:bit’s radio?

Hint: The resources section at the end of this chapter will be useful too. In addition to frequency,
another important parameter of electromagnetic waves is wavelength. The wavelength of a wave
is the distance between a point on the wave and the same point on the next wave. The unit of
wavelength is meters. Figure 2.2 shows an example of a wavelength.

II

Radiation Type
Wavelength / m

Radio
103

Microwave
102

Visible
0.5 x 106

Ultraviolet
108

X-ray
1010

Gamma ray
1012

19
CHAPTER 2. BROADCAST COMMUNICATION: ONE TO ALL

Programming: Receiving and sending broadcast messages
In this activity, you will learn how you can receive a message from a broadcasting micro:bit. Also,
you will send broadcast messages yourself. If you are running this activity with your teacher in a
classroom, your teacher’s micro:bit will be the broadcast sender and you will try to receive from this
micro:bit. If you are running this activity alone or with a friend, you can find the example codes for
the broadcasting micro:bit under https://microbit.nominetresearch.uk/networking-book/. You can use
these examples to test your receiver code by downloading it to a second micro:bit. These files will run
on your micro:bits, but you will not be able to display the code using the JavaScript Blocks editor. You
will complete the following three tasks to experiment with broadcasting.

Task 1: Configure your radio
Description: For broadcast communication, you need all your micro:bits to have the same radio group
ID. This group ID will be the broadcast address. This is like tuning into the correct channel to receive a
TV broadcast.

Instruction: Program your receiver micro:bit’s group ID to 0. This is the group ID used in the example
broadcast sender programs 1. For this, use the code block for setting the radio group in the JavaScript
Blocks editor. It’s under the Radio menu, as shown in Figure 2.3. You can learn about the radio blocks
in more detail at https://makecode.microbit.org/reference/radio.

2.4

2.5

1If you are using your own programs to send a broadcast, you can select the group ID as you like.

aImage by Dicklyon (Richard F. Lyon) - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7184592

Figure 2.2: Wavelength is the distance between a point on the wave and the same point on the next wave. It is measured as the distance
between two peaks.

Frequency and wavelength are related. The relationship between frequency and wavelength is given
by a formula:

From Equation 2.1, we see that the higher the frequency, the shorter the wavelength. You can see this
also in Figure 2.1. How long do you think your micro:bit’s radio waves are?

wavelength (meter) = (2.1)
Speed of light (meter/second)

Frequency (Hertz)

https://microbit.nominetresearch.uk/networking-book/
https://commons.wikimedia.org/w/index.php?curid=7184592

20
NETWORKING WITH THE MICRO:BIT

2.6

2.7

Task 2: Receive a broadcast message
Description: In this task, you will program your micro:bits to receive a message from a broadcasting
micro:bit. You will use the example broadcast sender programs to test your receiver program.

When writing your receiver programs, there are two questions you need to think about.

 1. Which blocks in the JavaScript Blocks editor do you need to use to receive a radio message?

 2. Using these blocks, can you receive any type of message, for example, a number or a string?

Instruction: First, you will start by programming micro:bits to receive a number.

Download https://microbit.nominetresearch.uk/networking-book/SendNumber.hex into your sender
micro:bit.

This sender program uses the radio group 0 to broadcast and sends a number between 0 and 9,
whenever button A is pressed Program your micro:bit to receive and display a number. Test your
program using the sender micro:bit.

Second, you will program your micro:bit to receive a string. Download https://microbit.nominetresearch.
uk/networking-book/SendString.hex into your sender micro:bit. This program also uses radio group 0
and sends a string, whenever button A is pressed. Program your micro:bit to receive and display the
string. Test your program using the sender micro:bit. What did you receive?

Task 3: Send a broadcast message
Description: Now it is your turn sending broadcast messages. If you run this exercise in a large
group, with several micro:bits, you should notice that you are receiving a lot of messages! Can you
guess who is sending which message?

Instruction: Program your micro:bit so that it can send a number when you press the button A and a
string if you press button B. Extend your receiver program so that you can receive either a string or a
number. For this, you will use a neat trick for the “on radio received” block. Pressing the little settings
button on the block brings up a menu. This menu will allow you to drag additional values under Packet
block. You will notice that the original “on radio received” block will extend to show these additional
values. Figure 2.4 shows how the trick works.

Figure 2.3: Setting the Radio group in the JavaScript Blocks editor.

https://microbit.nominetresearch.uk/networking-book/SendNumber.hex
https://microbit.nominetresearch.uk/networking-book/SendString.hex
https://microbit.nominetresearch.uk/networking-book/SendString.hex

21
CHAPTER 2. BROADCAST COMMUNICATION: ONE TO ALL

Extended activity

Figure 2.4: Making micro:bit radio to receive either a string or a number.

Problems
Problem 2.1 Which frequency range does your micro:bit’s radio work in?

Problem 2.2 What is the speed of light?

Problem 2.3 Using the Equation 2.1, calculate the wavelength of your micro:bit’s radio.

Problem 2.4 Is it easier to broadcast using wired or wireless communication? Why?

Resources

• BBC Bitesize, The electromagnetic spectrum - http://www.bbc.co.uk/schools/gcsebitesize/science/
edexcel/electromagnetic_spectrum/electromagneticspectrumrev1.shtml

• BBC Bitesize, An introduction to waves - http://www.bbc.co.uk/schools/gcsebitesize/science/aqa_
pre_2011/radiation/anintroductiontowavesrev2.shtml

• Video: How does Wi-Fi Work? (Brit Lab) - https://youtu.be/xmabFJUKMdg
• Wired, Why Everything Wireless is 2.4GHz?- https://www.wired.com/2010/09/wireless-explainer/

2.8

2.9

Exercise 1.
Extend your program in Task 2 for receiving a string. Display a “Sad” face on
your micro:bit’s display until you receive a “Hello” message. Then display a “Happy”
face for 2 seconds.

Exercise 2.
Discuss some issues with broadcast communication. Is it always useful or
necessary to send messages to everybody? What about privacy? Is this a problem
that everybody receives all messages?

2.10

http://www.bbc.co.uk/schools/gcsebitesize/science/edexcel/electromagnetic_spectrum/electromagneticspectrumrev1.shtml
http://www.bbc.co.uk/schools/gcsebitesize/science/edexcel/electromagnetic_spectrum/electromagneticspectrumrev1.shtml
http://www.bbc.co.uk/schools/gcsebitesize/science/aqa_pre_2011/radiation/anintroductiontowavesrev2.shtml
http://www.bbc.co.uk/schools/gcsebitesize/science/aqa_pre_2011/radiation/anintroductiontowavesrev2.shtml
https://youtu.be/xmabFJUKMdg
https://www.wired.com/2010/09/wireless-explainer/

22
NETWORKING WITH THE MICRO:BIT

23

3. GROUP COMMUNICATION

Introduction
In the previous chapter, you experimented with broadcast: sending messages to everybody. In this
chapter, you will learn about sending a message so that it just goes to a smaller group of people.
This is an activity that is best carried out with a large group of friends or class mates so that you can
experiment with different groups and group sizes.

Group communication (also known as multicast) is an interesting concept, and enables several of
today’s Internet technologies. For example, it enables sending videos as fast as possible over the
Internet. In this chapter, you will learn:

• The concept of group communication and group or multicast address
• When group communication is useful and when it isn’t

What you’ll need
• 2 micro:bits
• 1 whiteboard/board
• board markers/post-it notes
• 1 teammate

Background
In the previous chapter, all micro:bits received messages from all the other micro:bits. This might have
got confusing (or amusing!). Now, let’s try limiting who you can send messages to and receive
messages from. This is called group communication. Group communication is used in the Internet to
send to many people at the same time. For example, Internet television and video conferencing use
group communication.

For this, the messages need to be labeled with a group or multicast address.

3.

3.2

3.3

Definition 1. — Group communication.
In group communication or multicast, a message is sent only to the computers in the group.

24
NETWORKING WITH THE MICRO:BIT

3.4

Definition 2. — Group address.
A group or multicast address is a special address which says all devices in the group
should receive this message.

To configure the group address (or group ID) in your micro:bit’s radio, you will again use the “radio set
group” block under the Radio menu like in Chapter 2. The main challenge of this chapter is creating
the groups for communication. How do computers learn about and join these groups?

What happens when they leave a group? In this chapter, you will have a chance to think about these
questions when you experiment with creating groups.

Further Reading

When configuring group IDs for micro:bits, you will notice that the group IDs range from 0 to 255. This
is the decimal (base 10) representation of group IDs. But we can also write these group IDs in binary
(base 2). For the binary case, we will need 8 bits to get to a maximum group ID of 255.

Let’s think about the binary representation of group IDs. Figure 3.1 shows an example for the group
ID 172 in 8 bits: 10101100. Notice that, we start reading bits from right to left. Each bit is numbered 1
to 8, corresponding to a power of two. The rightmost bit, bit 1, means 20 = 1. Bit 2 means 21 = 2 and we
continue like this until we reach bit 8, which means 27 = 128. Each bit location may contain either 0 or
1. To find the decimal value of 10101100, we need to do some maths: For bit location x, we multiply its
bit value by 2x-1. For the first bit location 8, the bit value is 1, and we need to multiply 28-1 = 27 = 128)
by 1. After doing this for all bit locations, we add all the values we found. The result of this addition is
172. Now, check for the case 11111111. Is it really equal to 255? To learn more, see the BBC Bitesize,
Binary revision page in the Resources section.

Figure 3.1: Binary representation of group IDs.

Programming: Creating groups and messaging within groups
In this chapter, you need to work together in pairs or small groups, with at least 2 micro:bits in each
group. You will complete two tasks to program your micro:bits to send messages to and receive
messages from your group.

25
CHAPTER 3. GROUP COMMUNICATION: ONE TO MANY

Task 1: Create groups
Description: In this task, you will choose a unique group ID for your group, and configure your radios
with this group ID. You will use the radio block radio set group in your program in the JavaScript
Blocks editor. When choosing group IDs, you have to think about the best way to choose this number.
Hint: What would happen if two groups choose the same number, and how would you make
sure that doesn’t happen?

Instruction: Use the board and post-it notes to choose a group ID. Make sure your group ID is not
the same as any other group ID.

Task 2: Send and receive messages
Description: You will use the programs from the previous chapter to send and receive
messages to your group. You will change these programs to count the number of messages you
receive. This way, you will test whether you receive messages that only come from your group.
Instruction: Write a sender program that sends a random number between 0 and 9, when you press
the button A. Write a receiver program that increments a counter each time it receives a number.
When you press the button A at the receiver, it displays the value of the counter. With your group, test
that you are receiving the correct number of messages. Test together with other groups that you are
not receiving their messages.

Extended activity

3.5

3.6

3.7

3.8

Exercise 1.
How easy or difficult would it be if micro:bits could create groups automatically
themselves? How would they pick a group ID? How would they make sure nobody
else had that number? Would broadcast be useful? Discuss with your teammates.

Exercise 2.
Can a micro:bit be part of two groups or more? How would you program your
micro:bit to do that?

Problems
Problem 3.1 Fill in the blank in this sentence: “A one-to-many communication between one sender
and a group of receivers is --- communication.”

a) unicast

b) multicast

c) broadcast

d) none of the above

Problem 3.2 Let’s assume the group ID is 3 bits. For example, 010 is a group ID. What is the maximum
number of groups can you have in a network?

Problem 3.3 If the group ID were 6 bits, what is the largest group number you could choose for your
micro:bit?

Problem 3.4 “Compared to broadcast, the receivers in group communication receive more messages.
”True or False?

26
NETWORKING WITH THE MICRO:BIT

3.9 Resources
BBC Bitesize, Binary revision - http://www.bbc.co.uk/education/guides/z26rcdm/revision

http://www.bbc.co.uk/education/guides/z26rcdm/revision

27
CHAPTER 3. GROUP COMMUNICATION: ONE TO MANY

28

4. GAME 1: SHAKEY DONKEY

Introduction
Let’s put everything you have learned so far into practice with a fun game. If you have not already
seen it, Shakey Donkey is a micro:bit game that uses the radio 1. Shakey Donkey is played with two
players, and it measures how fast you react to a Donkey appearing in your micro:bit. The game starts
with shaking micro:bits. The moment your micro:bit displays a Donkey, you should shout “Donkey!”
and shake your micro:bit to make it disappear. At the end, when you press the button A, if your
micro:bit displays a happy face, you won!

In this chapter, you will practice:

 1. the concept of group communication

 2. using group or multicast address

 3. sending and receiving messages

 4. shake and button inputs

 5. program variables and random numbers

What you’ll need

• 2 micro:bits
• 1 whiteboard/board
• board markers/post-it notes
• 1 teammate

Programming: Playing Shakey Donkey
Description: To be able to play this game in groups of 2, you will set a unique group ID for your pair.
Then you will program the Shakey Donkey game given to you in three parts in the Figure 4.1.

4.

4.2

4.3

1This game is by David Whale. We thank him for allowing us to use it in this book.

29
CHAPTER 4. GAME 1: SHAKEY DONKEY

Instruction: To set your groups, repeat the activity from Chapter 3. Make sure your group IDs
are unique!

The game is played by shaking your micro:bit each time the donkey appears on your display, to get
rid of it.

So, the first thing to do is to program what your micro:bit should do “On shake”. This is shown in
Figure 4.1a. Notice that, in this first part, your program sends a number.

So, you need a piece of code for handling a received number. This second part is shown in Figure
4.1b. Add it to your JavaScript Blocks editor program.

The third part, shown in Figure 4.1c, handles the case when the button A is pressed. This part of the
program decides whether you won or not. Add this part into your program too.

Download the program into your micro:bits. Play the Shakey Donkey game with your teammate.
Then, go through the problems to explain how your program works.

(a) Shakey Donkey program - Part 1: Shake your micro:bit to send your reaction time.

(b) Shakey Donkey program - Part 2: Receive the other player’s reaction time, and display the donkey.

30
NETWORKING WITH THE MICRO:BIT

(c) Shakey Donkey program - Part 3: Press button A to learn the result.

Figure 4.1: Parts of the Shakey Donkey game

4.4 Problems
Let’s first look at Part 1, in Figure 4.1a.

Problem 4.1 At the beginning, what is the value of the caught variable for both players? Does anybody
need to change the me variable?

Problem 4.2 Who gets to send their me variable first?

Next, let’s look at Part 2, in Figure 4.1b.

Problem 4.3 When you receive a number, you set the caught variable? What does the caught variable
mean?

Problem 4.4 You also change the you variable by the received Number. What does the you
variable track?

Now, let’s look at both Parts 1 and 2.

Problem 4.5 Imagine you already started playing the program. You saw some donkeys appear on
your display, and you shook them away. How did your me variable change? What is it equal to?

Finally, let’s look at Part 3, in Figure 4.1c.

Problem 4.6 How do you know you won? Does the other player know the result? How? Explain how
the me and you variables are used to decide the winner.

Problem 4.7 How would you make sure you win this game?

31
CHAPTER 4. GAME 1: SHAKEY DONKEY

32

5.

5.2

5.3

5. UNICAST COMMUNICATION: ONE TO ONE

Introduction
Unicast, sending messages to a single receiver, is the typical way we communicate on the Internet.
For example, to view a web page, we send unicast messages to a server, which in turn sends us the
page to display on our browser. In this chapter, you will send unicast messages, for example to a
friend’s or teammate’s micro:bit. Doing this, you will learn some basic ideas of computer networking,
including:

• the concept of unicast
• the concept of a protocol
• the concept of an address and IP address
• the concept of a data packet and a header

What you’ll need
• 2 micro:bits
• 1 whiteboard/board
• board markers/post-it notes
• 1 teammate

Background
This chapter covers unicast communication. So, what is unicast?

Definition 1 — Unicast.
Transmission of a message to a single receiver.

When transmitting messages to each other, computers use protocols.

33
CHAPTER 5. UNICAST COMMUNICATION: ONE TO ONE

Definition 2 — Protocol.
A set of rules for how messages are sent across networks.

Definition 3 — IP address.
A unique string that identifies computers that use the Internet Protocol to communicate
over a network. This string is made up of 4 decimal numbers, that range between 0 and
255. Each decimal is separated by dots. For example, 213.248.234.11 is an IP address.

Definition 4 — Data packet.
A data packet is a piece of data sent over a network. This piece of data has an actual
message part (for example, an image or a text) and one or more header parts. A header
contains helpful information for protocols like the sender and receiver IP addresses.

Simply, protocols define how computers should send messages and what they should do when
they receive a message. On the Internet, every computer or device follows the Internet Protocol
(IP). According to Internet Protocol, each device is given a unique address, called an IP address.
Remember you have already used special addresses for broadcast and multicast. In this chapter, we
consider unicast addresses. IP address is used for unicast on the Internet1.

Your micro:bit also has an address (but it is a bit different). You already partly changed your micro:bit’s
address, by changing the group ID.

When two computers communicate, the sender sends a data packet to the receiver.

Figure 5.1 shows how the data and one header forms a data packet. In this figure, as well as the
sender and receiver addresses, the example header also includes a message type. Message type
tells the receiver whether it is receiving, for example, a text or an image. Remember, in the previous
chapters, you programmed your receivers to receive a specific type of message. If your packets
contained a header with the message type, then it would be easier to write the receiver program.
In this chapter, to unicast to other micro:bits, you will create a data packet by adding a header with
source and destination addresses.

Figure 5.1: A data packet contains a message and a header. A header contains information to help a protocol such as sender and
receiver addresses, and message types. Different protocols may add different headers to a message.

Data packet

Header Message

Sender address

Receiver address

Message type

“How are you
today”

1There are also special range of IP addresses that can be used for multicast and broadcast

34
NETWORKING WITH THE MICRO:BIT

Programming: Sending and receiving unicast messages
In this section, you will program your micro:bits to send and receive unicast messages completing
four tasks. To start with, you need two micro:bits. For unicast to work, your radio should receive all
messages sent, but your program should read only the ones that are addressed to you. This is like
seeing all the post coming into your house, but only opening the envelopes with your name on.

Task 1: Configure your radio
Description: To receive any packet, sent by anybody, you need to use broadcast as the underlying
communication.

Instruction: Set your radio group ID like you did in Chapter 2 for broadcast communication.

Task 2: Design your header
Description: The sender micro:bit needs to add a header to each message before sending. The
message header will include:

• sender address
• receiver address

For the message header, you will create a special string.

Instruction: First construct the sender and receiver addresses. With your teammate, pick two-
letter strings as micro:bit addresses. You need one address for your micro:bit, and one address for
your teammate’s micro:bit. For example, you can use your initials: These are “CS” and “AK” for the
authors of this book. Important! Your addresses should be unique across all the addresses of
micro:bits that are in the same room with you. Next, join the strings for sender and receiver
addresses to create a header. Use the blocks under the Text menu in the JavaScript Blocks editor
(see Figure 5.2), for example, join.

5.4

5.5

5.6

Figure 5.2: Text menu in the JavaScript Blocks editor

35
CHAPTER 5. UNICAST COMMUNICATION: ONE TO ONE

5.7

5.8

5.9

5.10

Task 3: Create your packet and send
Description: Now it is time to create your packet. As shown in the Figure 5.1, a header and a
message form a packet. Your final packet will have the following information:

• sender address
• receiver address
• your message

Instruction: Pick a string as your message. For example: “Hello”. Use the Text blocks to join your
message string with your header. Now, your sender micro:bit is ready to send unicast packets.

Task 4: Receive a packet
Description: When the receiver micro:bit receives a packet, it decides whether to receive or ignore
the packet. Notice that the receiver micro:bit receives a single string, but it knows that this string is
made up of:

• Sender address: first 2 letters
• Receiver address: next 2 letters
• Sender’s message: the rest of the string

The receiver needs to use this information to decide which packets are for itself.

Instruction: Divide the received string into the sender address, receiver address, and sender’s
message variables. Use the Text blocks, for example substring & compare. Check if the receiver
address is equal to your micro:bit’s address. If it is, then your micro:bit is the rightful receiver. Display
the sender address and the message on your display. If your micro:bit is not the receiver, be a good
citizen and ignore the message.

Challenge: Filter senders
Description: Sometimes, you may not want to receive messages just from anybody. For this, you will
write a program so that you only receive messages from two people you know. We will call this your
allow-list (often referred to as a whitelist).

Instruction: Extend the receiver program to also check the sender address field in the header. Check
whether this address is in your allow-list. If yes, display the sender address and the message. If not,
ignore the message. Test your program with addresses in and outside your allow-list.

Extended activity

Exercise 1.
You may have written two separate programs: one for the receiver and one for the
sender. Change your program so that both micro:bits can send and receive.

Exercise 2.
Did you try listening out for messages sent from other micro:bits in your class?
How could your program achieve this? Is this the right thing to do? How might you
protect your messages from others snooping?

36
NETWORKING WITH THE MICRO:BIT

Exercise 3.
In this chapter, we have covered one way to do a unicast: Putting sender and
receiver addresses in a data packet header. But there is another way. Remember
Chapter 3. If you set your group to be only for your pair of micro:bits, then this is
like you are unicasting. To unicast like this, choose a unique group ID, like you did
in Chapter 3. Announce it on the board so that no one else uses it. Write programs
for your pair of micro:bits that send and receive using this radio group ID. What are
the limitations of doing unicast like this? Hint: Think about how many possible
group IDs there are. Would this be enough for everyone in the world who
has a micro:bit?

Problems
Problem 5.1 In what ways is unicast like broadcast and group communication? In what ways is it
different?

Problem 5.2 Which ones are not IP addresses?

 a) -1.0.0.1

 b) 278.0.10.0

 c) 104.20.14.61

 d) 127.0.0.1

 e) 161.23.84;18

 f) 161.73.246.13

 g) 104.20.14.61.15

Problem 5.3 In this chapter, you used two-letter strings for your addresses. How many different people
can you unicast using this address size?

Problem 5.4 When selecting an address size for your message header, can you pick any size you
like? In your program, what happens if you increase your address size to 10 letters? Do you see any

benefits? Or are there any limitations?

Problem 5.5 How does the size of a data packet header affect the actual packet size? If your data
packet size were 100 Bytes, and your header size were 10 Bytes, how big could your messages be?
What happens if the header size increases to 50 Bytes?

Resources
• Video: IP addresses and DNS (code.org) - https://youtu.be/5o8CwafCxnU
• Video: IP addresses (CommonCraft) - https://www.commoncraft.com/video/ip-addresses
• BBC bitesize networks - http://www.bbc.co.uk/education/topics/zjxtyrd

5.11

5.12

https://youtu.be/5o8CwafCxnU
https://www.commoncraft.com/video/ip-addresses
http://www.bbc.co.uk/education/topics/zjxtyrd

37
CHAPTER 5. UNICAST COMMUNICATION: ONE TO ONE

38

6. TWO-WAY UNICAST

6.

6.2

6.3

Introduction
In this chapter, you will learn about bidirectional communication: sending a message to another
micro:bit and getting a response to your message. You will also learn about the Ping program, which
is a commonly used tool to check if computers are still connected to the Internet. This chapter will
build on the learnings from Chapter 5. The new ideas are:

• The idea of 2-way communication (bidirectional communication)
• The Ping program
• The concept of round-trip-time

What you’ll need
• 2 micro:bits
• 1 whiteboard/board
• board markers/postit notes
• 1 teammate

Background
Bidirectional communication enables two-way communication between two computers.

Definition 1 — Bidirectional communication.
This is a communications mode in which data is transmitted in both directions but not
necessarily at the same time.

In the previous chapter, your micro:bits had clear roles: there was a sender and a receiver. In
bidirectional communication, either of the micro:bits can send and receive messages. This way,
it becomes possible to create two-way protocols. In these protocols, when a computer sends a
message, it waits for a certain response to its message.

39
CHAPTER 6. TWO-WAY UNICAST

Definition 2 — Ping.
Ping is an example of a two-way protocol. It is widely used in the Internet to test whether
a networked computer is on and connected OK.

Definition 3 — Round-trip-time (RTT).
Ping is an example of a two-way protocol. It is widely used in the Internet to test whether
a networked computer is on and connected OK.

A ping program sends a Ping message to test whether computers are OK. It expects this message to
be echoed back, for example with a Pong message. This is like playing ping pong but with computers
and over networks. If the sender does not receive a response to its Ping, this shows there is a
problem with the receiver. It is also a problem if it takes a long time before the sender receives a Pong
response. So, a ping program measures the round-trip-time between the two computers to point out
these problems.

Figure 6.1: Round-trip-time. Micro:bit 1 sends a Ping message to Micro:bit 2 at Time_send. The Micro:bit 2 responds with a Pong
message. Micro:bit 1 receives the Pong message at Time_receive. The difference between these two times, Time_receive and Time_
send is the round-trip-time.

Micro:bit 2

Time_send

Round trip time

Ping Pong

Time_receive

Micro:bit 1

Besides round-trip-time (RTT), the Ping program reports statistical information. Figure 6.2 shows an
example output as a result of using the command:

ping www.google.com

on the http://ping.eu/ping website. In the example in Figure 6.2, four Ping messages were sent to
www.google.com. The round-trip-time for each message is given with the time value in each line.
For example, for the first ping, the RTT is 10.2 ms (milliseconds). The program also reports ping
statistics. For example, 4 packets were sent, 4 packets were received. This means 0% packet loss.
The average RTT (shown as avg) is 10.184 ms.

In other words, the sender measures the difference in time when it sent the Ping and when it received
the Pong.

RTT = Time_receive -Time_send (6.1)

Figure 6.1 shows the relationship between, Ping, Pong, and round-trip-time

http://www.google.com
http://ping.eu/ping
http://www.google.com

40
NETWORKING WITH THE MICRO:BIT

Figure 6.2: The output of running ping to send four messages to www.google.com. The http://ping.eu/ ping online program reports
round-trip time and a statistical summary of the results.

With a micro:bit, to calculate the round-trip-time of your messages, you will use the running
time variable.

In the rest of this chapter, you will use the running time variable to calculate the round-trip time.
It will be very useful to record the time when you first sent a message, and also when you received
a response.

Hint: Recording running time means setting a variable equal to the current running time. You
will need to combine the set item block in the JavaScript Blocks editor Variables menu with
the running time block in the Input menu.

Figure 6.3: Running time

Definition 3 — micro:bit running time.
A variable that keeps record of how long has passed since the micro:bit was turned on
or reset (measured in milliseconds).

http://www.google.com
http://ping.eu/

41
CHAPTER 6. TWO-WAY UNICAST

Programming: Ping
This activity is best done with a team of two. You will together program your micro:bits to run the Ping
program. For this, you will need to complete four tasks.

Task 1: Prepare for unicast
Description: Ping uses unicast between the sender and the receiver micro:bits. Look at your notes
for Chapter 5 and your unicast program to remember how to do unicast.

Instruction: Start with using your unicast program from the Chapter 5 as a basis. In this program,
decide which micro:bit is going send the Pings, and which micro:bit is going to respond with Pongs
Set the address variables based on your decision. Design your message header, Ping packet, and
Pong packet.

Task 2: Send a Ping
Description: The ping sender records the time before it sends out a Ping packet. It unicasts the Ping
packet.

Instruction: Use running time to record the Ping sending time. Send a Ping packet to the receiver
micro:bit.

Task 3: Receive a Ping
Description: The receiver micro:bit responds a Ping message with a Pong.

Instruction: Program the receiver micro:bit to unicast a Pong packet when a Ping packet is received.

Task 4: Receive a Pong and calculate round-trip-time
Description: When the sender micro:bit receives the Pong, it calculates the round-trip-time.

Instruction: Program the sender to receive a Pong packet. When the Pong is received, record the
time using the running time variable. Show the difference between receiving and sending times on
your display. Run your program 5 times, and write down the send times that you see in your display.

Answer these two questions:

 1. What is the minimum and maximum round-trip-time (RTT)?

 2. What is the average RTT?

Exercises

Exercise 1.
Extend your ping program to send automatically more than one Ping message.
Test it with 10 Pings. Calculate the average round-trip time of these Ping messages.

6.4

6.5

6.6

6.7

6.8

6.9

42
NETWORKING WITH THE MICRO:BIT

Exercise 2.
The ping program reports the round-trip-time. What if you wanted to calculate
the time the message took one-way? Is it possible to calculate one-way times?
In other words, is it possible to calculate how long it takes to send a Ping to the
receiver? Or how long a Pong takes from the receiver to the sender?

6.10

6.11

Problems
Problem 6.1 In Figure 6.2, what is 216.58.213.100?

Problem 6.2 What is round-trip-time, and how is it calculated?

Problem 6.3 Think about the following scenario: micro:bit 1 sends a Ping to micro:bit 2 at time 5.
If the round-trip-time is 10, at what time did the micro:bit 1 receive the Pong message?

Problem 6.4 In Figure 6.2, what are the minimum and maximum round-trip-times (RTTs)?

Problem 6.5 Figure 6.2 shows 0% loss. What would the loss percentage be if 2 Ping messages
were lost out of 5?

Resources
• Video: What is a Ping? - https://youtu.be/N8uT7LNVJv4

https://youtu.be/N8uT7LNVJv4

43
CHAPTER 6. TWO-WAY UNICAST

NETWORKING WITH THE MICRO:BIT

44

7. GAME 2: ROCK, PAPER, SCISSORS OVER THE RADIO

7. Introduction
Let’s play a game of rock, paper, scissors! This game is played with two players. Each player, at the
same time, forms one of the three shapes (rock, paper or scissors) with their hands. Then, they use
these rules to decide who wins:

• The rock blunts the scissors.
• The scissors cut the paper.
• The paper covers the rock.
• If both players choose the same shape, it is a tie.

Figure 7.1 shows these rules.

In this chapter, you will program this game using your micro:bits. Doing so, you will practice:
• Unicast communication
• Programming with variables
• Programming with conditionals

Figure 7.1: Rock paper scissors
game: Rock beats Scissors.
Scissors beats Paper. Paper
beats Rock.

Scissors

beats paper

Paper

beats rock
Rock

beats scissors

45
CHAPTER 7. GAME 2: ROCK, PAPER, SCISSORS OVER THE RADIO

7.2

7.3

7.4

7.5

7.6

Task 1: Start with the simple game
Description: To familiarize yourself with the game, try the Rock-Paper-Scissors activity at
https://www.microbit.co.uk/blocks/lessons/rock-paper-scissors/activity. Notice that the program gives
a number to rock, paper, and scissors. For example, paper=0, rock=1, and scissors=2.

Instruction: Program the code shown on the Rock-Paper-Scissors activity page, and download it to
your micro:bits. Play the game with a friend. You will each shake your micro:bits at the same time and
then decide who wins using the rules shown in Figure 7.1.

Task 2: Handshapes over the radio with unicast
Description: To play the game over the radio, you will use button A to select paper, rock or scissors.
You will use button B to confirm your selection and send it over the radio. Like in Task 1, use paper=0,
rock=1, and scissors=2. You will send one of these numbers over the radio depending on the selection.

Instruction: Write a program to do the following:

1. Use button A to select paper, rock or scissors. Each time you press button A, it should alternately
show an icon of either paper, rock or scissors.

2. Use button B to confirm your selection, and unicast it to your friend’s micro:bit over the radio like
you did in Chapter 5.

3. Add code for receiving a number. When you receive a number, show the corresponding icon on the
display. For example, if you received 0, display the paper icon.

Test with your teammate that you can send and receive your handshape values over the radio.

Task 3: Fill the table of rules
Description: Your program, when it receives a number from your teammate’s micro:bit, decides who
wins.

Instruction: To decide who wins, compare the number you picked with the number you received. We
have provided an incomplete example table to help you decide the result in Figure 7.2. Using this
table, you compare My hand to Opponent’s hand. For example, if both of these numbers mean Paper,
it is a tie, and the result is a surprised face. But, if My hand is for Paper and the Opponent’s hand is
for Scissors, the result is a sad face. In contrast, if My hand is for Scissors and the Opponent’s hand
is for Paper, then the result is a happy face. Using the rules in Figure 7.1, fill the rest of the table.

What you’ll need
• 2 micro:bits
• 1 whiteboard/board
• board markers/post-it notes
• 1 teammate

Programming: Rock, paper, scissors
To program this game, it is best to work with a teammate. Task 1 is for familiarising you with the game
and will not use the radio. Starting from Task 2, you will start writing the parts of your program to play
this game over the radio.

https://www.microbit.co.uk/blocks/lessons/rock-paper-scissors/activity

46
NETWORKING WITH THE MICRO:BIT

Task 4: Play the game
Description: Once you have filled the table, you need to decide how to program these rules in your
code. Your program will:

1. play the game based on Rock-Paper-Scissors rules (see Figure 7.1)

2. display a happy face if you won, a sad face if you lost. And if it’s a draw, show a surprised face.

Instruction: Figure 7.3 shows a template for programming the table using the if block in the JavaScript
Blocks editor Logic menu. Note that this is just a template and it is there to give you an idea of the
structure of your program. For instance, your on radio received block will have to be different to do
unicast communication (see Chapter 5).

You will notice in the template that we used two variables: selected and received. selected is set to
True when you make the selection for your hand by pressing button B. received is set to True when
you receive your opponent’s hand. In the forever block, the game is only played when both selected
and received are True. Once you enter the block to play the game, these variables are reset to False
for the next round.

After you program the game, play it with your teammate! Who wins more often?

7.7

Figure 7.2: Incomplete Rock paper scissors table

Opponent's hand

My hand Paper (0) Rock (1) Scissors (2)

Paper (0)

Rock (1)

Scissors (2)

47
CHAPTER 7. GAME 2: ROCK, PAPER, SCISSORS OVER THE RADIO

7.8

7.9

Problems
Problem 7.1 How do you test a tie in your program?

Problem 7.2 How does the Table 7.2 change, if paper=2, rock=0, and scissors=1? Redraw your table.

Problem 7.3 To play with a different player, what do you need to change in your program? Remember
you are using unicast to send your hand.

Problem 7.4 What happens if you send your hand to the other player before they pick theirs? Will
there be a problem? Could they cheat?!

Resources
• Flash game: Rock-Paper-Scissors: You vs. the Computer - http://www.nytimes.com/interactive/
science/rock-paper-scissors.html

Figure 7.3: Rock paper scissors: A template for programming the rules

Exercise 1.
How might you expand your program to play rock/paper/scissors/lizard/spock? To
learn more about this extension check the website: http://www.samkass.com/theories/
RPSSL.html

http://www.nytimes.com/interactive/science/rock-paper-scissors.html
http://www.nytimes.com/interactive/science/rock-paper-scissors.html
http://www.samkass.com/theories/ RPSSL.html
http://www.samkass.com/theories/ RPSSL.html

48
NETWORKING WITH THE MICRO:BIT

49

8. HANDLING ERRORS: RETRANSMISSIONS

8.

8.2

8.3

Introduction
In the previous chapters, you probably noticed that wireless communication isn’t always reliable. In
other words, not every message you send may be received by the other side. In this chapter, you will
learn how to increase the chance your messages are received. So, what would you do if a message
gets lost? This chapter will cover one simple but effective method: retransmissions.

In summary, you will learn about:
• Wireless communication errors
• Retransmissions as way to improve reliability

What you’ll need
• 2 micro:bits
• 1 teammate

Background
In wireless communications, an error can occur for several reasons. For example, there may be
physical obstructions, like walls, doors, and even people. The wireless signals lose power as they
go through these obstructions and sometimes bounce off them! The more obstructions there are
between a sender and a receiver, the more chance there is of an error. Also, if the sender and receiver
are too far away from each other, they may not always be able to communicate. Imagine there are
many obstacles between two people, they may not always hear what the other is saying!

Another reason for a wireless error may be radio interference. This is because wireless communication
is broadcast (remember Chapter 2). This means that there may be many broadcasters, and their
transmissions may collide at the receivers. These broadcasters interfere with each other.

50
NETWORKING WITH THE MICRO:BIT

Definition 1. — Interference.
In wireless communications, interference is any other signal that disrupts a signal as it
travels to its destination.

Definition 3. — Packet error rate.
Packet error rate is the ratio of packets that have been received with one or
more errors and the packets sent.

Imagine, in a classroom, when everybody is talking at the same time. You will miss half of the things
your friend says. Other people’s signals interfere with your friend’s signal on its way to you. In
networking, this is a packet loss.

Definition 2 — Packet loss.
Packet loss happens when one or more data packets traveling
in a computer network do not reach their destination. Packet loss is measured as the
ratio of packets lost and the packets sent (see Equation 8.1).

Also, if there is too much interference, you may receive messages incorrectly! Going back to the
classroom example, this is like you hearing “Bat” when your friend is shouting “Cat”. In networking,
this is a packet error. Packet errors are measured as packet error rates.

Packet loss = (8.1)
Packet lost

Packets sent

Packet error rate = (8.2)
Packets with errors

Packets sent

In this chapter, we will cover one simple method to handle these errors, retransmissions, where the
sender automatically retransmits messages multiple times to increase the chance of reception. In

Definition 4. — Retransmissions.
Retransmissions mean sending messages many times.

Figure 8.1, let’s assume the sender knows that the communications medium loses half of its packets.
In other words, the packet loss is 0.5 (or 50%). The sender micro:bit decides to send each packet
twice, to increase the chance that its messages get through. The first packet is the transmission, and
the second packet is the retransmission. So, the number of retransmissions is 1.

Figure 8.1: Retransmissions may increase message success. In the example, the sender sends each message twice by default.
So, even if the first “Hello” failed, the second “Hello” was received by the receiver!

Receiver micro:bit

Sender micro:bit

Time

Time

50% of packets lost in this
communications medium

HelloHello

51
CHAPTER 8. HANDLING ERRORS: RETRANSMISSIONS

It is common to use retransmissions combined with another method. For instance, senders may
choose to retransmit only when they are sure there has been an error. We will explore this option inthe
next chapter, Chapter 9.

Programming: Retransmissions
This activity is best done with a teammate. You will start with creating packet errors in Task 1, and
then test different packet error rates in Task 2. In Task 3, you will program the retransmissions solution
to handle these errors. In this task, you will also run a series of experiments to measure how well
retransmissions work.

Task 1: Create packet errors
Description: In wireless communication, packets may fail randomly. This may make testing your
code for this chapter difficult. To test errors, you will use a custom block in the JavaScript Blocks editor
to send messages with deliberate errors.

The ErrorRadio functions are like the Radio functions but have an extra error parameter. This
parameter is set to 20 by default, which means, on average, 20 packets fail out of 100. So, the packet
error rate is 0:2 or 20%.

8.4

8.5

8.6

Figure 8.2: Error radio custom blocks

Instruction: To use the custom blocks in the JavaScript Blocks editor, import the ErrorRadio.hex file
at https://microbit.nominetresearch.uk/networking-book/ErrorRadio.hex into your JavaScript Blocks
editor. With your teammate, decide who will have the sender micro:bit, and who will have the receiver
micro:bit. Follow the approach in Chapter 5 to put sender and receiver addresses in your packets.

You may copy and change one of the programs you have written for Chapter 5 to use the ErrorRadio
blocks. Write a simple sender program that sends a number with an error. Download it to the sender
micro:bit. Write a simple receiver program that receives a number and displays it on the screen.
Download this program to the receiver micro:bit.

Change the packet error rate using these error values in your program: 0, 50 and 100. Test packet
errors by observing the receiver display.

Task 2: Send a sequence of messages
Description: In this section, you will send a sequence of messages to the receiver micro:bit.

Instruction: Extend your program in Task 1, to send this sequence:

Start 1 2 3 4 5 6 7 8 9 10 End

You can send the Start and End using the normal Radio blocks to send them without an error. But
remember that your micro:bit’s radio may drop messages. So, there may be errors even in sending
Start and End. No radio is perfect!

https://microbit.nominetresearch.uk/networking-book/ErrorRadio.hex

52
NETWORKING WITH THE MICRO:BIT

Table 8.1: Experiment results

Extend the receiver program to count the number of messages it receives in this sequence. Run
experiments setting the error parameter to 25, 50, and 75. Calculate the packet loss using Equation
8.1. Repeat each experiment three times. Fill the Table 8.1 with the result of your experiments.
For example, when error is set to 25, and you received:

Start 1 5 6 7 8 9 10 End

this means you received 7 packets, and lost 3. Your packet loss is 0.3. The first row of the table is
filled based on this example. Add in the values from your own experiment. Based on your experiment
results, discuss with your teammate how the experiment results change as you change the value
of error.

Error value Experiment no. Packets
received Packet loss

25 (example) 7 0,3

25 1

25 2

25 3

50 1

50 2

50 3

75 1

75 2

75 3

Task 3: Retransmit by default
Description: In this task, you will program automatic retransmissions at the sender side.

Instructions: Change your sender code from Task 2 to send each number in your sequence more
than once. To try out your code, set error to 75. For example, by setting the number of retransmissions
to 1, you will send the following sequence:

Start 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 End

This means the sender sent 20 packets in total, of which 10 are retransmissions.

Change your receiver code to count the unique numbers received. Count also the duplicates. Calculate
the packet loss. For example, let’s assume your receiver received, for the case of 1 retransmission:

Start 1 1 2 3 5 5 6 8 9 9 10 End

This means the receiver received 8 unique numbers (1, 2, 3, 5, 6, 8, 9 and 10) and 3 duplicates
(1, 5 and 9). Note that the packet loss is 9 packets out of 20 (0.45). But with retransmissions, the
receiver only lost 2 numbers out of 10 (it did not receive 4 and 7). Let’s call this improved packet loss
information loss. So, the information loss with retransmissions is 0.2. The first row of table 8.2 is filled
in based on this example.

Run each experiment three times each, for different retransmission values and fill in the rest of the table.

8.7

53
CHAPTER 8. HANDLING ERRORS: RETRANSMISSIONS

Retransmission Experiment no. Unique packets
received Duplicates Packet loss Information

loss

1 (example) 7 3 0.45 0.2

1 1

1 2

1 3

3 1

3 2

3 3

5 1

5 2

5 3

Table 8.2: Experiment results

Exercise 2.
Imagine you are going to survey packet loss at different locations inside a room
using two micro:bits. Write a receiver and a sender program to measure packet loss.
What do you observe? How does the packet loss change at different locations?

Problems
Problem 8.1 What is interference? Why does it happen?

Problem 8.2 If the sender sent 20 messages, and 11 messages were lost on the way to the destination,
what is the packet loss?

Problem 8.3 If the packet error rate is 0.2 and the sender sent 40 packets, how many packets had
errors?

Problem 8.4 Assume you do not know how many numbers there will be in a message sequence,
but you know the numbers will start from 1, and will increment by 1. For example, the sent message
sequence may be:

Start 1 2 3 4 5 6 7 8 9 10 11 12 End

8.9

8.8

Exercise 1.
Based on your experiments, discuss with your teammate how the increase in
retransmissions helps. In your discussion, answer the following questions:
• How does the information loss reduce as you increase the number of retransmissions?
• Does the method guarantee all messages are received at least once?
• How would you improve the retransmissions method?

Extended activity

54
NETWORKING WITH THE MICRO:BIT

8.10

What happens if you lose Start or End messages? Which is worse: the loss of a Start or an End
message? If the only message you receive is a 4, what can you say about the number of messages
lost?

Problem 8.5 Assume you do not know how many numbers there will be in the message sequence.

And they do not follow any order. For example, the sent message sequence may be:

Start 3 5 10 2 End

What happens if you lose Start or End messages in the sequence? Which is worse: the loss of a
Start or End message? If the only message you receive is a 5, what can you say about the number
of messages lost?

Resources
• Video: The Internet: Packets, Routing, and Reliability - https://youtu.be/AYdF7b3nMto

https://youtu.be/AYdF7b3nMto

55
CHAPTER 8. HANDLING ERRORS: RETRANSMISSIONS

56

9. HANDLING ERRORS: ACKNOWLEDGEMENTS

9.

9.2

9.3

Introduction
In the previous chapter, you used retransmissions to deal with wireless transmission errors. In this
chapter, you will improve on this by using acknowledgements. Doing this activity, you will learn several
key methods and protocols for error control in networking.

In summary, you will learn:
• The concept of acknowledgements
• The concept of Automatic Repeat Request (ARQ)
• The Stop-and-Wait protocol

What you’ll need
• 2 micro:bits
• 1 teammate

Background
In the previous chapter, a message was transmitted multiple times even if the receiver already
received an earlier copy. This is wasteful! You could have been transmitting new information instead
of repeating yourself. This is also wasteful for the receiver, which needs to keep discarding the
duplicates.

Definition 1 — Acknowledgement (ACK).
Acknowledgements are small messages that the receiver sends back, to tell the sender
that it received a message. The sender then knows that it doesn’t need to retransmit,
and is ready to send the next message.

To avoid this, we will introduce a new concept called acknowledgements. If the sender does not
receive an acknowledgment, it should retransmit its message.

57
CHAPTER 9. HANDLING ERRORS: ACKNOWLEDGEMENTS

Definition 3 — Automatic Repeat Request (ARQ).
Automatic Repeat Request is an error control method. It uses acknowledgements and
timeouts to retransmit packets. Retransmissions may continue until the sender receives
an acknowledgment, or a maximum number is reached.

Definition 4 — Stop-and-Wait ARQ Protocol.
In the Stop-and-Wait ARQ protocol, the sender:
1. sends a packet
2. waits for the acknowledgement (ACK) but gives up after the timeout period
3. if timeout, goes to step 1
4. if ACK, gets a new packet, goes to step 1.

But how long should the sender wait for an acknowledgement? This is specified by a timeout

Definition 2. — Timeout.
A timeout is the amount of time allowed to pass before the sender gives up waiting for an
acknowledgement.

In other words, if the sender does not receive an acknowledgement within a timeout period, it will
decide the packet must have got lost.

Acknowledgements are used in an error control method called Automatic Repeat Request (ARQ).

ARQ is used both in the Internet and mobile networks.

In its simplest form, an Automatic Repeat Request uses the Stop-and-Wait ARQ protocol.

In Stop-and-Wait protocol, the sender cannot send a new packet until it receives the acknowledgement
for the previous one.

So, how does the Stop-and-Wait protocol handle packet losses? In the following, we go through a
few examples.

Figure 9.1 shows an example of a successful transmission. The sender sends “Hello” and the receiver
responds with an ACK. The sender receives the ACK before the timeout ends, so it knows that the
packet was received OK. Now, the sender can start sending another message.

Now, let’s look at some error cases. Figure 9.2 shows that the first message from the sender is lost.

Receiver micro:bit

Sender micro:bit
Timeout ACK returns before timeout

Time

Time

Hello ACK

Figure 9.1: Stop-and-Wait ARQ protocol: The receiver sends an ACK back to the sender, so the sender knows that the “Hello” message
arrived OK.

58
NETWORKING WITH THE MICRO:BIT

So, the receiver does not send an ACK. When the timeout ends, the sender has not received an ACK.
So, it retransmits the message. The second attempt is successful, and the sender receives an ACK
on time (before a timeout).

Receiver micro:bit

Sender micro:bit
Timeout

Message lost

End of timeout with no ACK received,
so the packet is retransmitted

Time

Time

Hello Hello ACK

Figure 9.2: Stop-and-Wait ARQ protocol: The message gets lost, so the sender retransmits it.

Receiver micro:bit

Sender micro:bit
Timeout

ACK is lost

End of timeout with no ACK received,
so the packet is retransmitted

Time

Time

Hello
Hello ACK

Figure 9.3: Stop-and-Wait ARQ protocol: The message was received, but the ACK gets lost, so the sender retransmits the message.

Figure 9.3 shows an example where the message from the sender is received, but the ACK from the
receiver is lost. Again, when the timeout ends, the sender has not received an ACK. So, it retransmits
its message. The receiver receives the duplicate message and again, sends an ACK. This time the
ACK succeeds and things can go as normal.

Definition 5 — Sequence number
A sequence number is a number chosen by the sender, and included in the packet
header. When the receiver sends an ACK, it includes the next sequence number to tell
the sender that it received the first packet and is ready for the next one.

In the example, when the sender sends the first “Hello”, the receiver receives this message and sends
an ACK back. But the sender times out before it receives this ACK. So, it retransmits the second
“Hello”. Then, it receives the delayed ACK message. But which packet does this ACK refer to? The
first “Hello”, or the second? This confuses the receiver as well! Is the second “Hello” a new packet, or
a duplicate? To solve this confusion, the protocol needs to use sequence numbers.

For example, when the sender sends “Hello, 0”, this is a “Hello” message with a sequence number 0.
On receiving this packet, the receiver will send “ACK, 1”, which says “I received packet 0, send me
packet 1 next”.

These examples show that the Stop-and-Wait ARQ protocol handles data packet and ACK losses
quite well. But does it always work? Figure 9.4 shows a problem that can happen when messages or
ACKs are delayed. In other words, the timeouts end before ACKs can be received.

59
CHAPTER 9. HANDLING ERRORS: ACKNOWLEDGEMENTS

Receiver micro:bit

Sender micro:bit Timeout

this ACK got delayed

Is this the ACK for the first message
or the second?

Time

Time

Hello
Hello ACK

ACK

Figure 9.4: Stop-and-Wait ARQ protocol: What happens if a message gets delayed? It’s not clear which ACK refers to which message.

Programming: Stop and Wait!
To program the Stop-and-Wait ARQ protocol, you will work with a teammate. Like in Chapter 8, you
will use the custom ErrorRadio blocks to send messages with errors. The communication is unicast,
so you will still use source and destination addresses in your messages like you did in Chapter 5. Do
not forget that your receivers need to check if the received messages are addressed to them!

Task 1: Design your data and ACK packets
Description: Before you can send and receive any packets, first you will decide what your data and
ACK packets should look like.

Instruction: Discuss what is the minimum information you should have in your packets. Create two
string variables for data and ACK packets, using the Text blocks in the JavaScript Blocks editor.

9.4

9.5

9.6 Task 2: Timeout and retransmission
Description: To program the Stop-and-Wait, you need a timeout mechanism. After each transmission,
you need to wait for the ACK or timeout. You’ll need to decide how long the timeout should be.

Instruction: To do this task, you may either start from scratch or change your code from Chapter 8
for the sender micro:bit. At the sender side, program how to wait for the ACK. In the Basic menu, the
pause function will be useful for the timeout mechanism. If your pause ends before you receive an
acknowledgement, then you should retransmit the packet. If you receive the ACK before the pause
ends, you should remember this information when the pause ends and use it to send your next
message.

To test the program, you need to also program the receiver. The receiver sends an ACK packet for
each data packet it receives.

Task 3: Testing the reliability of Stop-and-Wait
Description: In this task, you will experiment with the Stop-and-Wait protocol you programmed. For
this, you will add a counter on the sender side to count the number of retransmissions. On the receiver
side, you need a counter to understand the effect that acknowledgements have on retransmissions.

Instruction: Decide on a timeout/pause time. Send five numbers to your teammate’s micro:bit using
the Stop-and-Wait protocol. Run the protocol with different error values (25 and 75), repeating each
experiment three times.

We won’t use sequence numbers in this lesson’s tasks, but you could try adding them as an
extended activity.

9.7

60
NETWORKING WITH THE MICRO:BIT

In the table, retransmissions are the number of times a packet needed to be resent. Duplicates are
the number of times the receiver received unnecessary retransmissions. So let’s assume that the
sender sent the following:

 1_1_1_2_2_3_4_4_4_4_5_5

The retransmissions are underlined: there were 7 retransmissions. And the receiver received the
following:

 1_2_2_3_4_5_5

The duplicates are underlined: 2 duplicates were received. The first row of Table 9.1 is filled as an
example. Use your experiment results to fill in the rest. By comparing retransmissions to duplicates,
discuss how good the protocol is at handling errors.

9.8

9.9

9.10

Exercise 1.
Discuss how acknowledgements work better than using only retransmissions. Do
you see any problems with using acknowledgements?

Exercise 3.
Research the “Alternating Bit Protocol”, which uses 1-bit sequence numbers to help
with problems discussed in Figure 9.4.

Exercise 2.
Discuss how the duration of the timeout period affects your protocol. For instance,what
happens if your timeout is too short or too long? What happens if acknowledgements
are delayed.

Problems
Problem 9.1 What does ARQ mean?
Problem 9.2 In the Stop-and-Wait ARQ protocol, if 10 packets are sent, how many acknowledgements
are needed?

Resources
• Video: The Internet: Packets, Routing, and Reliability - https://youtu.be/AYdF7b3nMto

Error value Experiment no. Retransmissions Duplicates

25 (example) 7 2

25 1

25 2

25 3

75 1

75 2

75 3

Table 9.1: Experiment results

Extended activity

https://youtu.be/AYdF7b3nMto

61
CHAPTER 9. HANDLING ERRORS: ACKNOWLEDGEMENTS

62

10. GAME 3: BATTLESHIP OVER RADIO

10. Introduction
In this activity, you will program the micro:bit version of a famous classic game called Battleship.
Battleship has been played since World War 1 with pencil and paper1. A plastic board game was
released in 1967, and now there are many electronic versions and apps2.

Let’s look at how this game works, using the example board in Figure 10.1. In this example, each
player uses their own 10x10 board, and each player’s fleet has 10 ships of different sizes (the grey
rectangles) placed on the board: 4 ships of size 2, 3 ships of size 3, 2 ships of size 4, and 1 ship of
size 6. arrangement of ships is of course hidden from the opponent. Once both players have placed
their ships on their boards, they start guessing the position of (shooting at) their opponent’s ships. In
the example board, the crosses mark the shots of the opponent. Notice that some of these crosses
did not hit any ships, and some of them did. The opponent has sunk the ship on squares 8A-8B. The
ship on the squares 6J-7J-8J was hit twice, and another shot on 8J will sink it. The players also each
keep a second board to mark the shots they have already tried.

Figure 10.1: Battleship board.

1`https://en.wikipedia.org/wiki/Battleship_(game)
2 For examples, see: https://battleship-game.org and http://www.mathplayground.com/battleship.html

`https://en.wikipedia.org/wiki/Battleship_(game)
https://battleship-game.org
http://www.mathplayground.com/battleship.html

63
CHAPTER 10. GAME 3: BATTLESHIP OVER RADIO

They record each hit and miss, so that they can decide which shot to fire next.

To program Battleship into your micro:bits, you will use your networking knowledge. This game
requires unicast and bidirectional communication, which you learned in Chapters 5 and 6. If you
program the variant in Exercise 10.1, you will use your learning from Chapters 8 and 9. In summary,
you will practice:

• The concept of unicast communication, two-way communication and retransmissions
• Sending and receiving messages
• Button inputs
• Display and its coordinates
• Variables and random numbers
• Arrays
• Loops

What you’ll need
• 2 micro:bits
• 1 teammate

How the game works
Let’s start by going over the different things we need to program Battleship. In the section above, you
saw an example of the game, with a 10x10 board.

Using the micro:bit display as a Battleship board: Since a micro:bit only has a 5x5 display, your
battleship board needs to be smaller! This does not allow for many ships or big ones. So, your fleet
will be 5 ships, each with a size just 1.

When you fire a shot, you will need to know if it was a hit or a miss. So, we need to reserve the top
row (as in Figure 10.2) to display hits and misses. If your opponent’s micro:bit says you had a hit,
your micro:bit will light the leftmost LED on the top row. If it was, unfortunately, a miss, your micro:bit
will light the rightmost LED.

Since your micro:bit has a limited display, you won’t be able to show your tries and misses in the
display. Maybe that’s a memory challenge that can be added to the game, or you can keep track of
these with paper like the children who played the game in earlier times?

Firing shots: To fire shots, you will use the buttons: First you will select a row and a column number to
choose a target, and then press both buttons together to fire the shot. Note that when LED coordinates
are given as “(x,y)”, x is the column number and y is the row number, and the numbers start at zero.
For more information, see https://www.microbit.co.uk/device/screen. Button A will be used to select
the column number and button B will be used to select the row number. So to fire a shot to (2,3), you
will need to press button A twice, and press button B three times, and then press both buttons A and B
together. To check your understanding, discuss with your teammate how you can send a shot to (0,4).

When you press both buttons to fire a shot, your program will send a message to your opponent’s
micro:bit. So for example, if you want to fire a shot at (4,4), you will send the coordinates (4,4).

When your opponent’s micro:bit receives a shot, it will check whether it is a hit or a miss: It will send
a message back with its radio saying either it is a "Hit" or a "Miss".

When you receive a "Hit", your micro:bit will light up the LED on the left corner of the top row.

When you receive a "Miss", your micro:bit will light up the LED on the right corner of the top row.

10.2

10.3

https://www.microbit.co.uk/device/screen

64
NETWORKING WITH THE MICRO:BIT

Figure 10.2: Battleship in micro:bit.

Figure 10.3: Battleship game: Initial stage with randomly placed ships.

Figure 10.4: Battleship game: Success! You hit a ship!

A sample game
Let’s see how things will look like on your micro:bits. At the beginning, you will have all your battleships
placed in the lower 4 rows, as in Figure 10.3. So, both players have 5 ships placed in the battle area.

10.4

The attacker (on the left) presses button A three times, and button B once. Pressing both buttons
at the same time fires a shot and sends a message over the radio for the position (3,1). There is a
ship on this location, and so this is a hit! So, in Figure 10.4, the leftmost LED in the top row of the
attacker’s micro:bit lights up. And in the opponent’s display, the LED in the position (3,1) gets turned
off, because this ship was sunk.

65
CHAPTER 10. GAME 3: BATTLESHIP OVER RADIO

Figure 10.5: Battleship game: An unfortunate miss!

10.5

Task 1: Setting up the game
Description: This part needs to take place before the game starts. You will place 5 ships on your
board. Think about randomly placing 5 points in the battle area, which is a 4 x 5 matrix. Answer the
following questions:

• How will you represent the battle area in your program as a data structure?
• How will you select random coordinates (column_number) for 5 ships, where
 column_number is 0..5 and row_number is 1..5?

• How will you represent the information that there is a ship at each of these coordinates?

You will also set up your radio and packet configuration to send unicast messages.

Instruction: Create the necessary data structures and variables that represent the ships in the
battlearea. Set up your radio and packets for unicast communication.

Test whether your program displays 5 ships randomly on the lower 4 rows of the display, like in
Figure 10.3.

10.6

Let’s also look at a miss situation (see Figure 10.5). In this case, nothing should change on the
opponent’s board. But in the attacker’s display, in the top row, the rightmost LED lights up to show a
miss.

Programming: Battleship
Battleship is a two-person game. Both players can run identical programs, or you can each program
your own version, as long as you agree on the details of the radio messages. When writing a more
complex program like this, you will find it easier if you split it up into parts, and test each part as you
write it. (This is a valuable skill as you learn more about programming!)

To help with this, we have split the program into four tasks: once you have completed the final task,
you’ll be able to play the game with your teammate. If you find any errors (bugs) in your program, work
with your teammate to fix them until the game plays as described in Section 10.2.

66
NETWORKING WITH THE MICRO:BIT

Task 2: Firing a shot
Description: When button A is pressed, it defines the column_number for a shot. So you need to
count how many times this button was pressed to get the column_number. When button B is pressed,
it defines the row_number for the same shot. Again, count the number of times to get the row_number.

Important: If you don’t press either button A or button B, the column_number=0 and row_number=0.
A shot with row_number = 0 is a wasted shot because there cannot be any ships on that top row!
Also make sure that if either button is pressed more than four times, it should start counting again
from 0. In other words, the button counters should increment with each button press like this: 0, 1, 2,
3, 4, 0, 1, 2, 3, 4 etc.

Pressing both buttons together is firing the shot, so your program should send column_number and
row_number over the radio to your opponent. Decide how to send this message in a packet, and
agree on this with your teammate if you’re writing separate programs.

Instruction: Program the button presses for A, B, and A+B. The program section for buttons A+B will
send a radio message.

To test the correctness of your code, add a little test code so that when you fire, as well as sending
a radio message, it also lights up the LED at (column_number, row_number). Use this to check that
aiming is working correctly. This is just test code, so remove it once you’re confident that it works.

Task 3: Receiving a shot
Description: When you receive a shot over the radio from your opponent, you will check whether you
have a ship on the (column_number, row_number) of the shot. If you have a ship there, then itwas hit
and sunk: You will send back a “Hit” message to your opponent, and remove the ship from the display.
If your opponent misses, you will send a “Miss” message.

Instruction: Depending on how the packet was formatted, decode (column_number, row_number)
from the received packet. If you have a ship on (column_number, row_number), it is a hit: Turn off
the LED at that position. If you have a separate data structure as a variable to represent your ships,
update that too. Send your opponent a “Hit” message. If it is a miss, send a “Miss” message to your
opponent.

Task 4: Receiving the shot result: “Hit” or “Miss”
Description: Turn on LEDs in the top row depending on the result. If it is a “Hit”, check if you
reached 5 hits. Then you won: Display a smile!

Instruction: If you receive a “Hit”, light the left LED of the top row (the LED in (0,0) position).

Update the count of your hits, and if you reached 5, display a smile! If the result was a "Miss", light the
right LED of the top row (the LED in (4,0) position).

Test your program(s) with your opponent. To start with, it’ll be easier if you can see each other’s
screens. You might find it helpful to put in some test code, like you did for the previous task. For
example, you could print out "hit" or "miss" when you receive and decode a shot. You might even find
it helpful to print out the coordinates of the shot when you receive the packet.

10.7

10.8

10.9

67
CHAPTER 10. GAME 3: BATTLESHIP OVER RADIO

10.10

10.11

Extended Activity
Battleship game has many variations. See the Wikipedia site in Resources to read about the variations.

Problems
Problem 10.1 Figure 10.6 shows randomly placed ships in a battle area. Which coordinates do you
need to send to hit all the ships?

Exercise 1.
One variation of the game allows players to keep secret that a ship has been
sunk. So, their opponent has to take further shots to confirm that the whole area is
clear. This is a bit like having a packet loss! Remember how you dealt with packet
losses in Chapters 8 and 9. How would you apply those concepts to this case?
Discuss possible solutions with your friend. Then, program and test your new
solution.

Exercise 2.
Imagine a variant when it takes 3 hits to sink a ship instead of 1 hit. How would
your program change? Do you need to make changes on the sender side or the
receiver side? How similar is this to using default retransmissions in Chapter 8?

Figure 10.6: Battleship game: A random battle area

Figure 10.7: Battleship game: Two players

Problem 10.2 Figure 10.7 shows randomly placed ships in the battle areas of two micro:bits.

68
NETWORKING WITH THE MICRO:BIT

Resources
• Battleship in Wikipedia - https://en.wikipedia.org/wiki/Battleship_(game)
• Online Battleship game 1 - https://battleship-game.org
• Online Battleship game 2 http://www.mathplayground.com/battleship.html

10.13

Rounds Micro:bit 1 Micro:bit 2 Result

1 (3,1) (2,1)

2 (0,3) (0,1)

3 (1,1) (3,2)

4 (4,1) (3,3)

5 (0,3) (4,3)

6 (2,2) (0,3)

7 (3,2) (1,4)

Table 10.1: Shots in each round

Table 10.1 lists all the shots that are fired from micro:bit 1 (left/red micro:bit) and micro:bit 2 (right/
yellow micro:bit). Who wins?

https://en.wikipedia.org/wiki/Battleship_(game)
https://battleship-game.org
http://www.mathplayground.com/battleship.html

69
CHAPTER 10. GAME 3: BATTLESHIP OVER RADIO

70
NETWORKING WITH THE MICRO:BIT

INDEX

A
address . 32

broadcast address 18

IP address . 33

multicast address 23, 24

allow-list 35

B
bidirectional communication38

binary . 11, 12

bit .11, 12

byte . 12

broadcast 11, 18

broadcast address 18

C
communications medium 11

custom block49

E
electromagnetic radiation 18

electromagnetic spectrum 18

frequency 18

hertz .18

radio waves 18

speed of light 18

wavelength 18

G
group communication. 11, 23, 25

multicast address 21, 22, 25

H
header . 29

I
interference .50

internet protocol 33

M
multicast . 23

71
INDEX

N
network . 12

P
packet33

ping . 11, 39, 40, 41

protocol . 33

R
reliability. .

acknowledgement (ACK). 11, 55

Automatic Repeat Request (ARQ). .55, 56

retransmission 12, 50, 51

sequence number 57

Stop-and-Wait protocol 56, 58

round-trip-time . 39

running time . 40

S
signal . 11, 12

T
timeout . 56, 57

U
unicast 11, 32, 44

W
wireless . 17

wifi. .17

72
NETWORKING WITH THE MICRO:BIT

Good bye!

73
NETWORKING WITH MICRO:BIT

