
Digital Technologies – Years F - 2 _ Sequences

Mapping template © Victorian Curriculum and Assessment Authority (VCAA). Creative Commons BY-NC-SA 3.0 AU.

 Strand Knowledge and understanding Strand: Processes and production skills

Digital systems Representation of data Collecting, managing and
analysing data

Creating digital solutions by:

Investigating and defining Evaluating Collaborating and
managing

Content

Description

Recognise and explore
digital systems (hardware
and software components)
for a purpose (ACTDIK001)

Recognise and explore
patterns in data and
represent data as pictures,
symbols and diagrams
(ACTDIK002)

Collect, explore and sort
data, and use digital
systems to present the data
creatively (ACTDIP003)

Follow, describe and
represent a sequence of
steps and decisions
(algorithms) needed to
solve simple problems
(ACTDIP004)

Explore how people safely
use common information
systems to meet
information, communication
and recreation needs
(ACTDIP005)

Create and organise ideas
and information using
information systems
independently and with
others, and share these
with known people in safe
online environments
(ACTDIP006)

Sequence of Lessons / Unit
Approx.

time
rq’d

Year A
or B

CD
Achievement
standard #

CD
Achievement
standard #

CD
Achievement
standard #

CD
Achievement
standard #

CD
Achievement
standard #

CD
Achievement
standard #

Pre-programming 2

1

3

Years F-2 Achievement Standard Years 3 and 4 Achievement Standard
By the end of Year 2

 Students identify how common digital systems (hardware and software) are used to meet specific purposes.
(1)

 They use digital systems to represent simple patterns in data in different ways. (2)

 Students design solutions to simple problems using a sequence of steps and decisions. (3)

 They collect familiar data and display them to convey meaning. (4)

 They create and organise ideas and information using information systems, and share information in safe
online environments. (5)

By the end of Year 4

 Students describe how a range of digital systems (hardware and software) and their peripheral devices
can be used for different purposes. (1)

 They explain how the same data sets can be represented in different ways. (2)

 Students define simple problems, design and implement digital solutions using algorithms that involve
decision-making and user input. (3)

 They explain how the solutions meet their purposes. (4)

 They collect and manipulate different data when creating information and digital solutions. (5)

 They safely use and manage information systems for identified needs using agreed protocols and
describe how information systems are used. (6)

https://creativecommons.org/licenses/by-nc-sa/3.0/au/

Digital Technologies – Years F - 2 _

Mapping template © Victorian Curriculum and Assessment Authority (VCAA). Creative Commons BY-NC-SA 3.0 AU.

Page 2

Pre-programming
At the F–2 level, where learning at the pre-programming stage is the expectation, there is no requirement to learn a particular
programming language. However, students do learn some basic computational skills such as working out steps and decisions required to
solve simple problems. For example, they can instruct a robotic toy to move in a certain direction. The focus at this level is on designing a
sequence of steps. Some students may be ready to learn to use a simple visual programming language specifically designed for young
children. An app that enables the user to drag and drop programming blocks can be used to create some simple animations.

Flow of activities

Short text Revisit algorithms
Identify the steps involved in completing a task and
create instructions for someone to follow.

Create algorithms
Incorporate the design of an algorithm for a
meaningful purpose.

Instructing a robotic device
Provide meaningful ways to incorporate the
programming of robotic devices.

Algorithmic thinking
Use a simple visual programming language
specifically designed for young children.

Questions to guide
exploration

Can you describe and represent steps to complete a task? How can I design an algorithm for a particular task?

How can I program a robot? How can you program a series of steps using programming

blocks?

 Investigating and defining (ACTDIP004) Investigating and defining (ACTDIP004) Investigating and defining (ACTDIP004)
Digital systems (ACTDIP001)

Investigating and defining (ACTDIP004)

What’s this about? Students continue to refine their understanding of
algorithms. They should be able to describe, follow
and represent algorithms. Typically, algorithms can
be represented in text and graphic forms, such as
photographs, ‘flowcharts’ and instructional cards.

Students consider the most suitable algorithmic
representation for a specific task, such as
directions to move an object from one position to
another; a sequence of dance steps; or a
basketball sequence to move to the goal.
Representation options could include ordered
photographs, a marked floor grid with directions
and steps, a sticky note sequence, or a PowerPoint
presentation.

A robot needs instructions to know what to do.

Students experienced in using Bee-Bots will know
that the programming is input by push buttons.

An Ozobot robot has a visual sensor to gather
information about its surroundings. An Ozobot can
follow visual commands, which are made up of a
series of colours.

While there is no requirement to learn a particular
programming language at F–2, some students will
be ready to learn to use a simple visual
programming language specifically designed for
young children.

The focus of the learning
(in simple terms)

Revisit algorithms by looking at familiar activities or
tasks. Identify the steps involved and create
instructions for someone to follow. Pair up students
and ask each student to read aloud the instructions
created by their partner.

Students see and verbalise algorithmic
representations. This is an effective pedagogy for
developing students’ understanding of algorithmic
thinking. If there are errors in a representation,
students can consider together how to change the
sequence or instructions so the task can be
completed as intended.

Students design an algorithm for a meaningful
purpose. For example, the class could imagine that
a new student has joined the class. They could
create algorithms that show the new student how
to find their way to and from locations in the
school. Photographs of each location can be
incorporated.

Look for opportunities for students to work with a
programming challenge. Have older students
design algorithms and represent them for their
audience. For example, as a cross-age task,
students can design and build a robot and design a
way to command the robot to complete a series of
tasks.

Where appropriate, students represent an
algorithm that can be carried out by a robotic
device.

Note: Students are not required to use a
programming language at this level, but many
students are able to issue instructions through a
controller.

Explore how Bee-Bot robots work. Using the
buttons students can identify the simple user
interface and how it works. The Bee-Bots
themselves represent hardware that the students
are exploring. You can provide meaningful ways to
integrate various subject areas as the students
program the Bee-Bot.

Students can create or select visual commands to
instruct an Ozobot robot to complete a task.
Discuss this robot as a piece of hardware and the
fact that it gathers data through sensors as its
input. Relate this to the output of relevant
movement or action.

Provide access to an app that uses visual
programming blocks as a way to animate an
onscreen character.

Students construct a sequence of steps (an
algorithm) by arranging various blocks in a logical
sequence.

In Scratch J,r for example, an algorithm will have a
start (eg press the green flag) and an end point
(red end block). These blocks execute one after
the other. Students can check that their code
executes in the correct order by following the
code and checking the visual animation.

Supporting resources
and tools and
purpose/context for use.

Introducing algorithms
This lesson has a range of activities to introduce or
extend students’ understanding of algorithms.

Thinking myself
This simple problem-solving game introduces basic
coding language and skills to early learners. Students
progress through four categories: decompose,
patterns, abstract and algorithms, and solve a
problem in each. Each category contains a step-by-
step tutorial followed by a simple task.

Cross-age making a robot
In this cross-age project, students collaborate on a
code for an unplugged robot. They design, test and
modify the robot and create instruction manuals.

What's the buzz?
Students create a map for a bee to follow. The bee
pathway can be followed by a Bee-Bot.

Three little pigs
Retell the story of the three little pigs using a light
sensing robot such as Ozobot.

Scratch Jr
Scratch Jr is an introductory programming
language that enables young students (aged 5–7)
to create their own interactive stories and games.

Daisy the dinosaur
This is a free iPad app featuring a dinosaur that
can be programmed to complete a series of simple
tasks including instructions to produce a desired
outcome.

Assessment

Suggested approaches
There does not need to be any formal assessment –
just formative to address any misunderstandings
before they are applied to a specific task.

Suggested approaches

 Demonstrate two steps or instructions in
the algorithm.

Suggested approaches

 Checklist for how the robot moved as per
instructions in the algorithm.

Suggested approaches

 Present or demonstrate branching or user
input in a digital solution.

https://creativecommons.org/licenses/by-nc-sa/3.0/au/
https://www.digitaltechnologieshub.edu.au/teachers/lesson-ideas/introducing-algorithms
https://www.digitaltechnologieshub.edu.au/resourcedetail?id=29e54198-09f9-6792-a599-ff0000f327dd
https://www.digitaltechnologieshub.edu.au/teachers/lesson-ideas/cross-age-making-a-robot
https://goo.gl/cx4qPT
https://www.digitaltechnologieshub.edu.au/teachers/lesson-ideas/integrating-digital-technologies/three-little-pigs
https://www.digitaltechnologieshub.edu.au/resourcedetail?id=36444098-09f9-6792-a599-ff0000f327dd
https://www.digitaltechnologieshub.edu.au/resourcedetail?id=d1f14198-09f9-6792-a599-ff0000f327dd

Digital Technologies – Years F - 2 _

Mapping template © Victorian Curriculum and Assessment Authority (VCAA). Creative Commons BY-NC-SA 3.0 AU.

Page 3

Achievement standard

Design solutions to simple problems using a sequence of

steps and decisions.

 Verbalise some instructions and compare
them to the stated algorithm. (This shows
understanding by the reader and any
errors, if appropriate, by the creator of
the algorithm.)

Achievement standard

Design solutions to simple problems using a sequence of

steps and decisions.

 Demonstrate two steps of a robotic
solution.

 Label a diagram of a robotic device.

Achievement standard

Design solutions to simple problems using a sequence of

steps and decisions.

Identify how common digital systems (hardware and

software) are used to meet specific purposes.

 Scratch Jr: Assessment: This resource assesses
students’ understanding of the programming
blocks.

Achievement standard

Design solutions to simple problems using a sequence of

steps and decisions.

https://creativecommons.org/licenses/by-nc-sa/3.0/au/
https://www.digitaltechnologieshub.edu.au/teachers/assessment/scratchjr-assessment

