
There can only be one 

© 2016 Education Services Australia Ltd, unless otherwise indicated. 

 Creative Commons BY 4.0 licence, unless otherwise indicated. 

Links with Digital Technologies curriculum areas 

Strand: Digital Technologies Processes and Production Skills 

Content description: Analyse and visualise data using a range of software to create 
information, and use structured data to model objects or events (ACTDIP026). 

Explanation: When developing a solution to any problem, be it digital or not, one of 
the biggest mistakes one can make is diving straight into the implementation phase 
without thinking about the design of the key elements of the problem and the design 
of the solution. To that end, it is important to model the system that you will be using 
– this includes both clearly defining the process that needs to be followed to develop 
the solution, and careful consideration of the nature of the data you’re working with. 

Any algorithm that is to be translated into software must be able to be represented 
using the structure, rules and conventions of the programming language being used. 
This means that it isn’t enough to define the data being used in broad terms such as 
'all of the votes', you also need to understand how that might be structured inside a 
program. For something like a collection of votes, the logical data structure that 
would be used in a program would be something like a list or array – something that 
allows you to store a collection of similar things in a way that can be accessed and 
manipulated for access to individual items or to the collection as a whole. 

If an incorrect structure is used to model or represent data in a program, working out 
how to use that data becomes difficult and students risk over-complicating the 
problem, which can be very frustrating. Thus, being able to take a real world object 
(such as a ballot box) and think about it in general terms that are analogous to some 
form of data structure (a list, or collection of votes) is a skill that is fundamental to all 
software and application development. 

Although not covered in this activity, databases are an example of a system that 
requires careful consideration of how data should be structured. A correct data 
structure provides the user with great flexibility and power when accessing and 
analysing the data, whereas a poorly constructed database would hinder their ability 
to draw relationships between elements of the data set and therefore make it difficult 
to draw conclusions about the data. 

Content description: Define and decompose real-world problems taking into 
account functional requirements and economic, environmental, social, technical and 
usability constraints (ACTDIP027). 

Explanation: By analysing the problem and visualising the steps in the process, 
students can determine what kinds of operations it will be necessary to perform on 
the data they are using. This helps them work out how the data in their program 
needs to be structured, but is integral to the selection of appropriate operations and 
sequencing in their algorithm design. 

Flowcharts are one example of a useful tool for this process. They can be done on 
paper or using online tools – it is usually faster to generate them in draft form on 
paper before publishing the solution in an electronic format. The flowcharts can then 
be used as the basis for algorithm implementation, and also provide a means of 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://www.australiancurriculum.edu.au/technologies/digital-technologies/curriculum/f-10?layout=1#cdcode=ACTDIP026&level=7-8
http://www.australiancurriculum.edu.au/technologies/digital-technologies/curriculum/f-10?layout=1#cdcode=ACTDIP027&level=7-8


There can only be one 

© 2016 Education Services Australia Ltd, unless otherwise indicated. 

 Creative Commons BY 4.0 licence, unless otherwise indicated. 

identifying natural control structures needed for the algorithm, such as branching and 
iteration. 

Since decomposing the problem into smaller problems helps identify how individual 
components or elements of the solution are affected, students can think about these 
smaller problems when determining the constraints that might be applicable to the 
problem they’re solving. Maybe it will only deal with numbers. Perhaps it only works 
for valid votes because assumptions are made about the data. Can the application 
be used by someone who is vision-impaired? These kinds of questions often lead to 
more robust solutions, or give students an incentive to think about the implications of 
their software’s use or misuse. 

Content description: Implement and modify programs with user interfaces involving 
branching, iteration and functions in a general-purpose programming language 
(ACTDIP030). 

Explanation: This activity focuses primarily on the processing of data rather than the 
design of a user interface. The solutions provided also don’t make use of any user-
defined functions, although there are clearly opportunities to do so when determining 
the lowest and highest candidate in each round of voting. This has the potential to 
simplify the flowcharts and can be used to introduce the concept of subroutines – 
whether or not to do this will be dependent on the experience of students in the 
group. 

The use of Python as the programming language of choice is a carefully considered 
decision. Python is a powerful language with relatively simple grammar and syntax 
conventions that encourage good programming practice. It maps nicely to the 
flowcharts that students will design, and doesn’t require any kind of wrapping 
functions or class declarations that beginning programmers don’t understand. 

The choice of problem was also deliberate – it provides strong curriculum links to 
Civics and Citizenship, has relevance to current events (and elections occur 
regularly), and the problem can be stated in increasingly complex terms. The 
implementation of a 'First past the post' solution requires the use of branching, 
iteration and input processing while keeping the problem definition relatively simple, 
whereas the preferential system adds additional layers of complexity for students 
ready for a greater challenge. 

Content description: Evaluate how student solutions and existing information 
systems meet needs, are innovative, and take account of future risks and 
sustainability (ACTDIP031). 

Explanation: Once a working solution is developed, students can then alter the data 
being provided to see the direct consequences of changes to their program. The 
process of testing also has the potential to reveal indirect consequences of their 
solution – if incorrect results are found when you change the votes being put into the 
system and you were to use your program to determine the result of a federal 
election, what does this mean? Would it be possible for someone to undermine the 
political process and our democratic system? How could we prevent this from 
happening? Those kinds of questions and discussions once the software is complete 
are an important part of the learning process that teachers need to facilitate in order 
to give students a reason to think beyond the immediate future and application of 
their solution. 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://www.australiancurriculum.edu.au/technologies/digital-technologies/curriculum/f-10?layout=1#cdcode=ACTDIP030&level=7-8
http://www.australiancurriculum.edu.au/technologies/digital-technologies/curriculum/f-10?layout=1#cdcode=ACTDIP031&level=7-8

