
Digital Technologies – 3 and 4_Digital solutions Digital

solutions

Mapping template © Victorian Curriculum and Assessment Authority (VCAA). Creative Commons BY-NC-SA 3.0 AU.

 Strand Knowledge and understanding Processes and production skills

Digital systems Representation of data Collecting, managing and
analysing data

Creating digital solutions by:

Investigating and defining Producing and
implementing

Evaluating Collaborating and managing

Content

Description

Identify and explore a range
of digital systems with
peripheral devices for
different purposes, and
transmit different types of
data (ACTDIK007)

Recognise different types of
data and explore how the
same data can be
represented in different
ways (ACTDIK008)

Collect, access and
present different types of
data using simple software
to create information and
solve problems
(ACTDIP009)

Define simple problems,
and describe and follow a
sequence of steps and
decisions (algorithms)
needed to solve them
(ACTDIP010)

Implement simple digital
solutions as visual
programs with algorithms
involving branching
(decisions) and user input
(ACTDIP011)

Explain how student
solutions and existing
information systems meet
common personal, school
or community needs
(ACTDIP012)

Plan, create and
communicate ideas and
information independently
and with others, applying
agreed ethical and social
protocols (ACTDIP013)

Sequence of Lessons / Unit
Approx.

time
rq’d

Year CD
Achievement
standard #

CD
Achievement
standard #

CD
Achievement
standard #

CD
Achievement
standard #

CD
Achievement
standard #

CD
Achievement
standard #

CD
Achievement
standard #

Intro to programming 8? 3

3

3

Years F-2 Achievement Standard Years 3 and 4 Achievement Standard
Years 5 and 6 Achievement Standard

By the end of Year 2

 Students identify how common digital systems (hardware and software) are used to
meet specific purposes. (1)

 They use digital systems to represent simple patterns in data in different ways. (2)

 Students design solutions to simple problems using a sequence of steps and decisions.
(3)

 They collect familiar data and display them to convey meaning. (4)

 They create and organise ideas and information using information systems, and share
information in safe online environments. (5)

By the end of Year 4

 Students describe how a range of digital systems (hardware and software) and their peripheral devices
can be used for different purposes. (1)

 They explain how the same data sets can be represented in different ways. (2)

 Students define simple problems, design and implement digital solutions using algorithms that involve
decision-making and user input. (3)

 They explain how the solutions meet their purposes. (4)

 They collect and manipulate different data when creating information and digital solutions. (5)

 They safely use and manage information systems for identified needs using agreed protocols and describe
how information systems are used. (6)

By the end of Year 6:

 Students explain the fundamentals of digital system components (hardware, software and
networks) and how digital systems are connected to form networks. (1)

 They explain how digital systems use whole numbers as a basis for representing a variety
of data types. (2)

 Students define problems in terms of data and functional requirements and design solutions by
developing algorithms to address the problems. (3)

 They incorporate decision-making, repetition and user interface design into their designs and
implement their digital solutions, including a visual program. (4)

 They explain how information systems and their solutions meet needs and consider
sustainability. (5)

 Students manage the creation and communication of ideas and information in collaborative
digital projects using validated data and agreed protocols. (6)

https://creativecommons.org/licenses/by-nc-sa/3.0/au/

Digital Technologies – 3 and 4_Digital solutions

Mapping template © Victorian Curriculum and Assessment Authority (VCAA). Creative Commons BY-NC-SA 3.0 AU.

Page 2

Intro to programming
Year 3 TOPIC Digital solutions Time: 8 HOURS

Programming is one process of the larger problem-solving methodology of creating digital solutions. Using a programming language can create a
solution to a problem. The starting point for the problem-solving methodology is finding out about (investigating) and working out (defining) the
problem. Once the problem has been defined the next step is to represent the solution as a series of steps (an algorithm). The algorithm can
highlight any decisions (branching) that need to be made and what pathways might result, as well as how a user might engage and provide input.
Algorithms at this level might be described verbally, written as a series of steps, represented on card, drawn or created digitally. The algorithm may
then be implemented using a programming solution where students use a visual programming language that involves dragging and dropping
programming blocks into a sequence. The final process is to evaluate how well their solution solved the problem.

Flow of activities

Short text

Define the problem
Define a problem drawing on computational thinking and draw
some conclusions about its features or needs.

Coming up with a solution
Create a storyboard or flow chart to record relationships
between the content and processes.

Implementing a solution
Use a visual programming language as part of the
digital solution.

Evaluation
Evaluate how well the solution met the desired outcome.

Questions
to guide
exploration

What is the problem?

How can I describe the solution? What programming skills do I need to create a digital solution?

How do you know if my solution is OK?

AC
Alignment

Investigating and defining (ACTDIP010) Investigating and defining (ACTDIP010)

Producing and implementing (ACTDIP011)

Evaluating (ACTDIP012)

What’s this
about?

When trying to solve a simple problem an important first step is
to define the problem. This helps us work out a relevant solution.
A simple problem is one that has a straightforward solution. At
this level the students should attempt to create a solution that
meets a common personal, school or community need; however,
for this unit the focus is restricted to a personal or school need.

At this level, defining a problem initially involves students
summarising the facts or features of an existing problem or an
opportunity (being proactive in creating a solution rather than
responding to a problem) so they can draw some conclusions
about it.

Note: Typically, when defining problems you do not ask ‘how’ as
this belongs to the process of designing a solution (how can a
solution be created?)

Once the problem has been defined, the solution (how it can be
solved) can be represented as an algorithm.

Students need to determine how the solution will be created.
This is done by stating or following an algorithm. At this level
the algorithm can be verbal or drawn using a combination of
images and text or perhaps by sequencing ready-made cards.

The algorithm needs:

 to be clear and explicit in its instruction (as the computer
will only do what it is told)

 to be sequenced in the correct order

 to have minimal steps.

Problems that require a digital solution often need content
that is prepared or sourced prior to programming the solution.
For example, for a simple guessing game where the user
selects the correct coding instruction to create a geometrical
shape, the content includes the correct coding sequences in a
suitable language. Consideration is also given to the kinds of
processes to be used; for example, checking the coding
instruction using a Pro-Bot or a turtle program such as Pencil
Code to draw the shape.

Creating storyboards or flow charts helps to record
relationships between the content and processes.

Once the plan (algorithm) for the solution is completed,
students follow the instructions using their visual
programming language.

Visual programs are made by dragging and dropping
blocks to create a computer program. Each block
represents a different instruction.

In most visual programming languages, the blocks are
grouped by colour with each one signifying a particular
function; for example: movement or adding sound.
They could also signify traditional instructions to
control decisions such as the repeat loop instruction.

At this level, students need skills in using a
programming language that creates options for users
to make choices in solutions. For example, a user input
and branching mechanism such as buttons in a
slideshow or selecting a different sprite to follow an
alternate pathway in a story created in Scratch.

Programmable robotic devices that use a visual
programming language can be used in engaging ways
to develop computational thinking skills. There are
many types of robotic devices available, each with its
own mobile app to enable control and/or
programming.

Robotic devices can be used effectively across a range
of learning areas.

After students implement their digital solution it is
important that they evaluate it.

One form of evaluation considers how well the solution met
the desired outcome and in particular the problem defined
at the beginning of the process. Did the content and
processes used, contribute to a suitable solution? Did the
solution meet a common personal or school need?

At this level, students use the criteria to determine how well
their solution met one or more of the following needs:

 personal, such as entertainment

 school, such as music learning

 community, such as facilities at local parks.

For this unit, students should restrict their criteria to
personal or school needs.

The focus of
the learning
(in simple
terms)

Defining a problem involves computational thinking. Support
students to break down problems (or needs) into smaller parts,
focus on the key elements and ignore detail that may not be
required, look for any patterns and create an algorithm.

Defining a problem can be difficult – it is very tempting for
students to make comments such as ‘I want a guessing game’ or
‘the robot needs to move around’ or ‘something doesn’t work
and it needs fixing’. Students need to be able to summarise the

Students follow an algorithm for simple or familiar tasks; for
example, their morning routine, learning a sporting skill,
playing a card game, making a paper plane or providing
directions to a hidden item. Use a range of ways to represent
the algorithm; for example, on cards, verbally, or in a
combination of images and text.

A fun way to demonstrate the need to be precise in your
instructions is to model a simple task such as making a jam

Use an unplugged activity where students become
familiar with the various visual programming blocks.
Provide laminated colour printed versions of the main
blocks such as motion, looks, sound and control.

Students use non-permanent markers and change
values on coding blocks (for example the angle of turn,
the number of steps or text in a ‘say’ block). Provide
some challenges such as sequencing blocks to create

The focus of learning in this unit is on students evaluating
their own solutions – they will progress to evaluating
existing information system solutions in the next unit.

Provide opportunities for pairs of students to review each
other’s solution, identifying two features that they like and
two features that could be changed (maybe to suit a
different audience) or improved.

https://creativecommons.org/licenses/by-nc-sa/3.0/au/

Digital Technologies – 3 and 4_Digital solutions

Mapping template © Victorian Curriculum and Assessment Authority (VCAA). Creative Commons BY-NC-SA 3.0 AU.

Page 3

facts or characteristics of a future need/solution so they can
draw conclusions about it. This involves being able to ignore
some less important information in order to grasp the key
features.

The process of defining a new need/opportunity can be guided
by key questions such as:

 Who would like this solution (who is the audience)?

 Why does this opportunity exist (why should this
solution be created)?

 What need would be met by this solution (what should
the solution be able to do)?

sandwich. By only doing exactly as the instructions command
all sorts of humorous mistakes can be made. This task can be
used to explain the need to review and rewrite a program.

Design a sequence of instructions using words and/or symbols
for others to follow. For example:

Arranging blocks
One student creates an image made up of several attribute
blocks. The student then instructs their partner to recreate
the image by selecting from a pool of blocks. This task uses
technical language of correct shape name, colour and size as
well as directional language: above, beside to the left or right.

Discuss the algorithms: How easy was the algorithm to follow?
Were the steps in order? Did the steps lead to the completion
of the desired outcome?

Asking procedural type questions (How do you build …? How
do you make …?) may give rise to the need for instructions to
solve the problem. These instructions are considered an
algorithm, a series of step-by-step instructions to complete a
desired task.

Depending on the problem, a digital solution may be required;
for example, as with these design-based questions:
• How do I create a digital story with more than one

ending?
• How can I control a robot to move through a maze?
• How can I help someone learn words in another

language?

simple programs; for example, use a control block to
make the sprite move, say something or perform an
action.

Provide an introductory programming tutorial to learn
the basics of visual programming. Courses such as
those provided by Code.org are a great place to start.
Refer to some of the Disney-inspired coding challenges
or those that provide guidance to create a simple
game.

Provide access to programmable robotic devices that
do not require visual programming, such as Bee-Bot or
Pro-Bot.

Students develop their computational thinking skills.
They complete challenges such as creating a maze
game with a Bee-Bot; programming a Pro-Bot to draw
geometric shapes and designs; or programming a Pro-
Bot to fulfil a range of actions such as moving, making
sounds and avoiding obstacles. Prior to programming
more complex commands students create their own
algorithms using a combination of arrows, symbols,
words and images.

Using a Pro-Bot, decisions can be incorporated using ‘if’
commands and sensors. For example, if the robot
moves into darkness turn on the headlights.

Integrate mathematics and geometry. Design a simple
guessing game that presents several possible coding
options for some geometric shapes. The selected
coding instruction is input into a turtle drawing
program such as Pencil code or into a Pro-Bot to check
whether the correct option was selected. Prepare the
content (shapes and coding instructions) and plan an
algorithm using a flow chart.

The process of evaluation should be directly linked to the
statement defining the problem, remembering that the
context of the solution should be to meet either a common
personal or school need.

Supporting
resources
and tools
and
purpose/
context for
use.

Creating-digital-solutions
General advice about the problem solving process related to
creating a digital solution to address a problem.

Introducing algorithms
Students design a sequence of steps for others to follow.

Making a jam sandwich
This video shows a collection of algorithm errors, and great
debugging opportunities.

Real-life algorithms: Paper planes
Use an algorithm to make a paper airplane.

Pro-Bot lessons from Simon Haughton

Pro-Bot robotics, Bee-Bot
Background information about commands for Pro-Bot.

Move my robot
A wealth of ideas to program a Pro-Bot.

Balloon pop
Design a course challenge for another
user which will result in the Bee-Bot, with a pin
attached, reversing into a balloon to pop it.

Pencil code
An easy-to-use turtle drawing program freely available
online (uses block-based programming).

Code your own sports game
Learn to code by following this tutorial about the basics
of visual programming.

Code with Anna and Elsa: An Hour of Code tutorial
This is an introduction to coding and computer science
in a safe, supportive environment.

Again, we can only refer to the evaluation resource mention
in the levels 5 and 6 resources.

https://creativecommons.org/licenses/by-nc-sa/3.0/au/
http://www.digipubs.vic.edu.au/pubs/digitaltechnologies/digital-technologies-L3-L4-creating-digital-solutions
https://www.digitaltechnologieshub.edu.au/teachers/lesson-ideas/introducing-algorithms
https://www.youtube.com/watch?v=leBEFaVHllE
https://studio.code.org/s/course2/stage/2/puzzle/1
https://slp.somerset.org.uk/sites/edtech/Primary%20Programming%20Support/Probot%20Parkfield%20help.pdf
https://www.bee-bot.us/downloads/file/Pro-Bot-Robotics.pdf
https://slp.somerset.org.uk/sites/edtech/Primary%20Programming%20Support/Probot%20Parkfield%20help.pdf
https://goo.gl/06yi9K
https://pencilcode.net/
https://studio.code.org/s/sports/stage/1/puzzle/1
https://code.org/hourofcode/frozen

Digital Technologies – 3 and 4_Digital solutions

Mapping template © Victorian Curriculum and Assessment Authority (VCAA). Creative Commons BY-NC-SA 3.0 AU.

Page 4

Moana: Wayfinding with code
This Disney Hour of Code tutorial uses a visual
programming language where students drag and drop
visual blocks to write code.

Assessment

Suggested approaches
For a new need or opportunity, identify:

 who the audience is

 what the main purpose/function of the solution is

 why the audience would like the solution.

Note: Students can present their problem or need definition as a
digital, oral or written statement.

Achievement standard

Define simple problems, design and implement digital solutions
using algorithms that involve decision-making and user input.

Suggested approaches
Are students able to show one example of branching and one
example of user input in the algorithm?

Each student reads aloud part of another student’s algorithm.

Achievement standard

Define simple problems, design and implement digital
solutions using algorithms that involve decision-making and
user input.

Suggested approaches
Presentation or demonstration of one aspect of the
solution that the student thinks helps solve the
problem (this also addresses evaluation).

Achievement standard

Define simple problems, design and implement digital
solutions using algorithms that involve decision-
making and user input.

Suggested approaches

 Presentation or demonstration

 Complete the statement – I like my solution
because …

 Complete the statement – next time I would …

 Select one feature of the solution and describe how
it helped meet a personal or school-related
need/opportunity.

Achievement standard

They explain how their solutions meet their purposes.

https://creativecommons.org/licenses/by-nc-sa/3.0/au/
https://hourofcode.com/moana

