
DT Challenge Blockly

Smart Garden

1. Displaying images and text

2. Sensors and pins

3. Bu�ons & Custom Images

4. Pu�ng it all together

 (h�ps://crea�vecommons.org/licenses/by/4.0/)

The Australian Digital Technologies Challenges is an ini�a�ve of, and funded by the
Australian Government Department of Educa�on (h�ps://www.educa�on.gov.au/).

© Australian Government Department of Educa�on.

https://creativecommons.org/licenses/by/4.0/
https://www.education.gov.au/

1
DISPLAYING IMAGES AND TEXT

1.1. Let's get started

1.1.1. Sensing the world around you

A biologist uses sensors to measure soil temperature and moisture. Public Domain, NPS photo.
(h�ps://www.flickr.com/photos/alaskanps/8446139444)

Scien�sts measure the world around us using all sorts of devices. For example, biologists studying plant
growth use thermometers to measure temperature, light meters to measure how the Sun's brightness, and
moisture sensors to measure how wet the soil is. Many of these devices run on simple computers.

In this course you'll make your own Smart Garden device, using the BBC micro:bit. Along the way, you'll
learn three things:

how the growth and survival of living things are affected by physical condi�ons of their environment
how to write computer programs for the micro:bit with Blockly
how to use the micro:bit's built-in sensors and external connec�ons to measure the world around
you

1.1.2. Introducing the BBC micro:bit!

The BBC micro:bit (h�ps://www.microbit.co.uk/) is a �ny computer. You can program it with blocks .

https://www.flickr.com/photos/alaskanps/8446139444
https://www.microbit.co.uk/

The micro:bit has:

5 x 5 LEDs (light emi�ng diodes)
two bu�ons (A and B)
an accelerometer (to know which way is up)
a magnetometer (like a compass)
a temperature sensor
a light sensor
Bluetooth (to talk to other micro:bits and phones)
pins (gold pads along the bo�om) to connect to robots and electronics!

If you don't have a real micro:bit ...

Don't worry! You can s�ll do this course. We have a simulator which works like a real micro:bit.

1.1.3. DIY Smart Garden

We're going to build a device with the micro:bit called a Smart Garden. It will use the built-in temperature
sensor, and you will learn how to connect a home-made soil moisture probe to the micro:bit.

By the end of this challenge, your Smart Garden will:

measure the temperature when you push one of the micro:bit's bu�ons
measure the amount of moisture in the soil when the other bu�on is pressed
display the temperature and moisture levels using special, customised images

The micro:bit Smart Garden in ac�on! (h�ps://groklearning-cdn.com/modules/cU5geH65oKwqHZLrVZLEZg/SmartGarden4.mp4).

0:00 / 0:43

https://groklearning-cdn.com/modules/cU5geH65oKwqHZLrVZLEZg/SmartGarden4.mp4

1.2. Displaying images

1.2.1. Hello, micro:bit!

Let's jump right in with a program on the micro:bit — put an image on the LED display:

1 Drag the image block into the hole in the show block.

2 Click to run the program. It shows a happy face!

Congratula�ons! You've wri�en your first micro:bit program!

1.2.2. Change the face

Let's put a different image on the display!

1 Drag the image block into the hole in the show block.

2 Change the image to something other than HAPPY

3 Run it to show your image!

show image Faces ▾ HAPPY ▾

image Animals ▾ BUTTERFLY ▾

show

You changed the image! Nice work! Play around with the example above to see all the different images the
micro:bit has.

Can you make your own images?

We'll see later on how to make your own images for the micro:bit.

1.2.3. Problem: Happy micro:bit!

Let's get the micro:bit to show a smiley face.

Follow the steps to complete your first problem:

You'll need

Tes�ng

Tes�ng that the display is showing a happy face.

Congratula�ons, you've wri�en your first micro:bit program!

Join the blocks in the problem editor together.1.

Click the
Run

 bu�on.2.

Click the
Mark

 bu�on to Submit.3.

 program.blockly

show

image Faces ▾ HAPPY ▾

1.2.4. Building Blocks

You won't always have the blocks you need ready to go — some�mes you'll need to gather more blocks to
make your program.

To get a new block:

1 Click the micro:bit drawer (this is the micro:bit bu�on on the grey part of the screen).

2 Drag the block .

3 Make your program!

Dragging blocks from the drawer

1.2.5. Problem: Wascally Wabbit

In this course, you're going to learn a bit about plants and their environments.

We can't easily show an picture of a plant on our micro:bit ... but we can show an animal! So let's make the
display show a rabbit, like in this example:

1 Click the micro:bit drawer.

2 Drag the show block.

3 Create the program to show a rabbit.

4
Run

 and
Mark

 your program.

5 Yay! You have made a fluffy micro:bit rabbit!

Where's the rabbit?

You can find the rabbit image in the image Animals list.

You'll need

Tes�ng

Tes�ng that the display is showing a rabbit.

Congratula�ons! You made a cute bunny wabbit!

 program.blockly

image Faces ▾ HAPPY ▾

1.2.6. Downloading

If you have a micro:bit, you can see your program in real life! Put your code onto the micro:bit like this:

1 Click the
Download

 bu�on. You will get a .hex file on your computer.

2 Plug your micro:bit into your computer using the USB cable.

3 Your micro:bit will show up like a USB drive on your computer.

4 Drag the .hex file onto the micro:bit.

5 Watch the yellow light on the micro:bit flash for a few seconds.

6 See your program running on the micro:bit!

We have more detailed instruc�ons with pictures (h�ps://medium.com/p/b89�bac2552) on our blog.

https://medium.com/p/b89fbbac2552

1.3. More than one

1.3.1. Giraffe Duck

OK, we can now show an image on the micro:bit. How do we show two images?

Let's try something. What if we put two image blocks together like the example below?

Click run to see what happens:

Uh oh! That's weird. We only see a duck!
Where did the giraffe go?

The micro:bit is really fast. It shows the giraffe, but it's too fast for us to see. We need to slow things down!

1.3.2. The sleep block

We can stop the micro:bit going too fast using sleep .

1 Click run.

2 The giraffe appears for 2 seconds. Then the duck appears.

image Animals ▾ GIRAFFE ▾

image Animals ▾ DUCK ▾show

show

image Animals ▾ GIRAFFE ▾

2000

image Animals ▾ DUCK ▾show

sleep for ms

show

Seconds and milliseconds

The sleep block measures �me in milliseconds (or ms for short), not seconds. There are 1000

milliseconds in a second — just like there are 1000 millimetres in a metre!

So you need to remember to put the sleep �me in ms — for example, to pause the micro:bit for 3

seconds you need sleep 3000 ms .

1.3.3. How much sleep ?

We can sleep for different lengths of �me.

The example below shows the giraffe for 5 seconds. Click to run the example to see what happens:

Now try changing the example, like this:

1 Change sleep 5000 ms to sleep 1000 ms .

2 Click to run the example again. The giraffe appears for only one second now!

image Animals ▾ GIRAFFE ▾

5000

image Animals ▾ DUCK ▾show

sleep for ms

show

1.3.4. Problem: I love the rain

It's great when it rains — as long as you remember your umbrella! Write a program to show an

UMBRELLA for one second, then show a HAPPY face.

Here's how your program should work — click to run the example:

Sleep for milliseconds

You need to use sleep 1000 ms to sleep for one second.

Tes�ng

Tes�ng that the display starts with an umbrella.

Tes�ng that the umbrella is s�ll on the screen less than 1 second later.

Tes�ng that the display changes to a happy face a�er 1 second.

Tes�ng that the happy face stays on the display for 1.5 seconds.

Congratula�ons!!

Drag the blocks you need from the workspace.1.

Select the correct images (look in the image Other list for the UMBRELLA, and in

image Faces for the HAPPY face!)

2.

Choose the correct sleep amount.3.

Join the blocks together.4.

1.4. Le�ers and words

1.4.1. Scrolling le�ers and words

So far we've used the display to show pictures. We can also show le�ers, words, even sentences, using the

scroll block.

1 run the example. Hello will scroll across the micro:bit.

2 Change " Hello " to your name.

3 run the example again to scroll your name across the micro:bit!

Now you know how to make the micro:bit display your name — awesome!

A string of le�ers

The green block is called a string.

" I'm a string "

" Hello "scroll

1.4.2. Problem: I ❤ the rain

Show how much you like mucking about in the rain!

Display I ❤ the rain! on the LEDs in the following way:

1 Scroll " I " on the micro:bit.

2 Show a HEART image for 1 second.

3 Scroll " the rain! " .

You already have the all the blocks you need — you just need to change them to make the program run

correctly.

Remember to
Mark

 your program!

Your program should run like this:

You'll need

Tes�ng

Tes�ng that an I scrolls past.

Tes�ng that a heart appears a�er the I.

Tes�ng that the heart stays on the display for 1 second.

Tes�ng that a t scrolls past.

Tes�ng that the rain! scrolls past.

 program.blockly

" Hello "

image Symbols ▾ DIAMOND ▾

10sleep for ms

show

scroll

" Goodbye "scroll

1.4.3. Problem: A 🦆 doesn't need an ☂ !

Ducks love the rain!

Write a program to display A 🦆 doesn't need an ☂ :

1 Scroll " A " on the micro:bit.

2 Then show a DUCK for 1 second.

3 Then scroll " doesn't need an " .

4 Then show an UMBRELLA .

It should run like this — click to run the example:

Tes�ng

Tes�ng that an A scrolls past.

Tes�ng that a duck appears a�er the A.

Tes�ng that the duck stays on the display for 1 second.

Tes�ng that doesn't need an scrolls past.

Tes�ng that an umbrella appears a�er the doesn't need an.

Tes�ng that the umbrella stays on the display.

1.5. Summary

1.5.1. What do living things need?

Take a closer look at the landscape in your local area — at your school, around your home, or in the local
park. Do you no�ce similar sorts of plants growing in these areas?

Different plants thrive under different condi�ons. Some, like tomato plants require 8 hours of con�nuous
sunlight and warm weather ... whereas raspberries thrive in cooler weather.

They also require different amounts of water, and different soil condi�ons too — they like different soil
textures, and dirt with different kinds of nutrients in it.

In an earlier ques�on, you displayed I ❤ the rain! on the micro:bit. Guess what, many plants ❤ the

rain too!

1.5.2. Photosynthesis

What tomatoes and raspberries do have in common is that they use photosynthesis.

Photosynthesis is the process used by all plants and algae (and even some bacteria) to harness energy from
the sun and turn it into food.

Plants use the Sun's energy to make their own food through a process called photosynthesis. CC-4.0, image by At09kg.
(h�ps://commons.wikimedia.org/wiki/File:Photosynthesis_en.svg)

All plants do this — but different plants have adapted to different types of soil, different amounts of water,
and different amounts of sunshine!

https://commons.wikimedia.org/wiki/File:Photosynthesis_en.svg

1.5.3. Problem: Adapta�on

Different plants have evolved to survive in very different envionments — they have adapted their shape,
size and structure to grow happily in their natural surroundings.

Which of these is not an example of plant adapta�on?

Tes�ng

That's right!

A cactus that stores water in its stem.

Rainforest plants with large, waxy leaves that catch sunlight and let water run off.

Water lilies with leaves and flowers that float on the water surface.

Tomato plants grown in a garden greenhouse to keep out the frost.

1.5.4. Problem: Plants love sunshine!

Which of the following code snippets will correctly display Plants ❤ sunshine! on the micro:bit's

LEDs?

Tes�ng

That's right!

" Plants "

image Symbols ▾ HEART ▾

1000

" sunshine! "scroll

sleep for ms

show

scroll

" Plants "

image Symbols ▾ HEART ▾

" sunshine! "scroll

show

scroll

" Plants "

1000

image Symbols ▾ HEART ▾

" sunshine! "scroll

show

sleep for ms

scroll

" Plants "

image Symbols ▾ HEART ▾

1000

" sunshine "scroll

sleep for ms

show

scroll

1.5.5. Congratula�ons!

Well done! You finished Module 1 — you're on your way to making your micro:bit Smart Garden!

We learned about:

what's in the BBC micro:bit

how to show an image on the micro:bit

choosing your own image
making the micro:bit wait with sleep

scrolling " strings " on the micro:bit

joining blocks together to make more things happen

Click to learn how to use the micro:bit's temperature sensor, and build your own soil moisture sensor.

2
SENSORS AND PINS

2.1. Sensors and loops

2.1.1. What's needed for good science?

Tes�ng predic�ons is an important part of science. To do this, scien�sts collect data and use evidence.

There are so many different types of data that scien�sts collect, and they use lots of different instruments
and methods to collect it!

Le�: A hydrologist measures streamflow (image by Deena Green (“h�ps://www.flickr.com/photos/usgeologicalsurvey/15303060773”),
Public Domain. Middle: Scien�fic weather sta�on (image by Michal Osmenda

(“h�ps://commons.wikimedia.org/wiki/File:Weather_sta�on_on_Mount_Vesuvius_(2437693238).jpg”), CC-2.0. Right: Seismograph used to
measure earthquakes (image by Yamaguchi先生 (“h�ps://commons.wikimedia.org/wiki/File:Kinemetrics_seismograph.jpg”), CC-3.0.)

During this challenge, You'll learn the skills to collect data with the micro:bit Smart Garden, which you can
use to make predic�ons about the health of your plants.

2.1.2. Senses and sensors

In the olden days, a farmer might go outside to see what the sky looked like to work out whether they had
to bring the sheep in. These days, many farmers use technology and data to get weather predic�ons.

https://groklearning.com/print/aca-dt-56-bk-microbit-garden/%E2%80%9Chttps://www.flickr.com/photos/usgeologicalsurvey/15303060773%E2%80%9D
https://groklearning.com/print/aca-dt-56-bk-microbit-garden/%E2%80%9Chttps://commons.wikimedia.org/wiki/File:Weather_station_on_Mount_Vesuvius_(2437693238).jpg%E2%80%9D
https://groklearning.com/print/aca-dt-56-bk-microbit-garden/%E2%80%9Chttps://commons.wikimedia.org/wiki/File:Kinemetrics_seismograph.jpg%E2%80%9D

Will it rain? You could ask the cows, or check the weather sta�on. (Cows image by Holgi (“h�ps://pixabay.com/photos/ca�le-australia-
victoria-landscape-63729/”). Weather sta�on image by (image by Ché Lydia Xyang

(“h�ps://commons.wikimedia.org/wiki/File:Rosalie_Park_weather_sta�on_-_panoramio.jpg”), CC-3.0.)

We can use technology to collect data about our plants. Why? Well, with good data, we can make good
decisions! If the data tells us that the plants are ge�ng too much water, then we can reduce the volume of
water (or how o�en we water them), giving the plants the best chances of survival.

Humans generally use their senses (sight, hearing, smell, taste, touch) to collect data and make decisions. If
you feel hot when you go out, then that's your skin collec�ng the data and sending it to your brain, helping
you make the decision to wear sunscreen and a hat!

The micro:bit doesn't have the senses we do, but it does have some cool sensors — these can collect
informa�on about the world, and send it back to the micro:bit's 'brain', it's central processor unit (CPU).

We'll be using these sensors to collect data about the health of our plants.

2.1.3. micro:bit the mega-sensor!

The micro:bit has a bunch of built-in sensors that are really handy for measuring the world around us.

It can measure the temperature, how bright the light is, whether it’s moving around or staying s�ll — it
even has a built-in compass!

Plus, you can connect things to the micro:bit through the connec�on points — called pins — along the
bo�om edge.

https://groklearning.com/print/aca-dt-56-bk-microbit-garden/%E2%80%9Chttps://pixabay.com/photos/cattle-australia-victoria-landscape-63729/%E2%80%9D
https://groklearning.com/print/aca-dt-56-bk-microbit-garden/%E2%80%9Chttps://commons.wikimedia.org/wiki/File:Rosalie_Park_weather_station_-_panoramio.jpg%E2%80%9D

We can use a few of these sensors to help look a�er our plants. First, we’re going to find out how to make
a program to measure the temperature.

2.2. Temperature sensor

2.2.1. What's the temperature?

The micro:bit's built-in temperature sensor is really easy to use — you just need the temperature block.

You put it inside a scroll number block like this:

The sensor tells you the temperature in degrees celsius, °C. (In this example, the temperature is always
28°C!)

Scrolling Numbers

The temperature sensor gives the temperature as a number, not a string. Numbers and strings are

treated differently by computers, so you need to use a scroll number block instead of a scroll block.

temperaturescroll number

2.2.2. Problem: The temperature is ...

The temperature block just gives you a number — which is boring!

Our Smart Garden should be a bit fancier, so write a program that shows the temperature in a nicer way.
For example, if the temperature is 28°C, the micro:bit scrolls T: 28 deg across the display like this:

1 First, scroll " T: " on the micro:bit.

2 Then scroll the temperature

3 Finally, scroll " deg " .

Remember to
Mark

 your program!

Temperature is a number!

So remember to use a scroll number block!)

Tes�ng

Tes�ng that an T: scrolls past.

Tes�ng that your program scrolls the temperature.

Tes�ng that deg scrolls past.

2.2.3. Looping forever

So far, our programs make the micro:bit do something, and then stop. But what if we want the micro:bit to
keep running forever?

We can use a micro:bit loop block to repeat code over and over. In the example below, the images will

keep repea�ng un�l you stop it:

You have to click to stop!

Don't forget to use the bu�on to turn off the micro:bit, otherwise it will keep running forever.

2.2.4. Weather update!

Now we can make a program that keeps checking the temperature!

In the example below, drag the scroll number block inside the micro:bit loop block, and run the

program:

image Animals ▾ BUTTERFLY ▾

1000

image Faces ▾ HAPPY ▾

1000sleep for ms

show

sleep for ms

show

micro:bit loop
do

micro:bit loop
do

temperaturescroll number

The micro:bit keeps scrolling the temperature un�l you tell it to stop!

Change the temperature!

See the temperature slider next to the micro:bit in the example above? When the program is running,
you can drag the slider up and down to change the temperature, and see the number change on the
micro:bit's display.

2.2.5. Problem: What's the temperature NOW?

We want our Smart Garden to measure the temperature, and keep upda�ng it un�l we tell it to stop.

Write a program that scrolls the temperature nicely — so if it is 28°C, the display scrolls T: 28 deg — and

repeats that un�l you stop it:

1 Get a loop block

2 Put a scroll block inside to display " T: "

3 Then put a scroll number block to show the temperature

4 Finally, put another scroll block to display " deg "

Your program should run like this:

Tes�ng

Tes�ng that an T: scrolls past.

Tes�ng that your program scrolls the temperature.

Tes�ng that deg scrolls past.

Checking that your code contains an infinite loop.

Tes�ng that the display goes back to scrolling T.

Tes�ng that the anima�on loops con�nuously.

2.3. Soil Moisture sensor

2.3.1. Hooking up the probes

OK, you've worked out how to get the micro:bit to measure temperature. Now it's �me to make a soil
moisture sensor.

Yes — make! The micro:bit doesn't have a moisture sensor built in. But that's OK, it's easy to make one
yourself. You'll need:

two metal probes to s�ck into the soil — good, thick metal nails will do the job!
two leads with crocodile clips on each end (some people call them alligator clips).

Use the leads to connect the nails to the gold pins along the bo�om edge of the micro:bit — you can see in
the picture below how to connect your two probes:

How to hook up the soil moisture probes.

That's all you have to do! Now, to write the code ...

2.3.2. Measuring moisture

Soil moisture sensors work by sending some electricity through the soil from one probe to the other.

If there is lots of moisture in the soil, the electricity can flow easily,
but if the soil is dry, it's hard for electricity to flow.

With the nail probes connected to the pins, the micro:bit sends electricity through the soil from the 3V pin,

and then we read how much electricity we get at pin0 with a read analog pin0 block.

Run the example below, and try moving the slider on the moisture scale next to the micro:bit:

read analog pin0 ▾scroll number

micro:bit loop
do

The micro:bit keeps measuring and displaying the moisture level un�l you tell it to stop.

But hold on — the sensor is displaying numbers, but what do the numbers mean??

2.3.3. Wet and dry

Our micro:bit doesn't know it's measuring soil moisture — it just knows it's reading some electricity at
pin0!

The read analog block measures this electricity as a number from 1 to 1023. So we need to work out

what these numbers mean.

High numbers mean pin0 is reading lots of electricity. That happens when the soil is very wet.

Low numbers mean pin0 is reading very li�le electricity, which means the soil is dry.

Pin0 readings for wet and dry soil.

2.3.4. Wet and dry video

Here's video showing the Smart Garden moisture sensor at work, with dry soil and wet soil.

Dry soil, low readings. Wet soil, high readings. (h�ps://groklearning-
cdn.com/modules/yprjyPs3K8HUAk3wPWZwcR/SmartGardenWetDry3.mp4).

You can see that with the dry soil, the sensor reading is around 300, and for the wet soil it is over 1000.

So higher numbers mean more moisture!

0:00 / 0:15

https://groklearning-cdn.com/modules/yprjyPs3K8HUAk3wPWZwcR/SmartGardenWetDry3.mp4

2.3.5. Problem: Moisture sensor

Your Smart Garden device needs to measure how wet the soil is, and to keep measuring un�l you tell it to
stop.

Write a program that measures the soil moisture, displays it in an elegant way, and repeats un�l you stop
it.

For example, if the moisture reading is 759, then the display should scroll M: 759.

1 Get a micro:bit loop block

2 Put a scroll block inside the loop, and set it to scroll " M: "

3 Put a scroll number block inside the loop

4 Then put a read analog block inside the scroll number block, and make sure it is set to Pin0

Your program should run like this:

Tes�ng

Tes�ng that the display starts with M:.

Tes�ng that the display scrolls the moisture reading.

Checking that your code contains an infinite loop.

Tes�ng that the display goes back to scroll M:.

Tes�ng that the display scrolls a range of moisture readings.

2.4. Doing inves�ga�ons

2.4.1. Science and measurement

If you were going to do a scien�fic inves�ga�on on plant growth, you might wonder:

How does changing the temperature affect the way plants grow?
How does changing the amount of water I'm giving them affect their growth?

Now you can make a micro:bit measure the temperature, as well as hook up a moisture sensor — so you
could use your micro:bit to help you do your inves�ga�on!

2.4.2. Change one thing only

Let's say you have some plants. Some of them you water every day, and keep them in a nice warm spot.
And some of them you water only once a week, and you keep them in a colder part of the room.

A�er a week, the first bunch of plants are growing well, but the second bunch don't seem very happy.

Was it the regular watering that helped the plants to grow? Or the temperature? Or both??

You don't know. So this is really important:

If you're doing an inves�ga�on you need to only change one thing between the two groups of plants, and
keep everything else the same.

2.4.3. ... keep everything else the same!

If you decide to change the temperature for one bunch of plants, you need to make sure that everything
else is the same for all the plants in your inves�ga�on.

They all need the same amount of water each day, the same amount of sunlight, the same kind of soil, ...
everything you can think of.

That way, if you do see a difference in the way some of the plants are growing, you can be pre�y sure it
was because of the different temperatures — because that was the only thing that was different!

2.4.4. Problem: Plant inves�ga�on

You're interested in seeing how plants grow with different amounts of sunlight. You have two sets of
plants, all the same type, in the same kind of soil. Which of the following inves�ga�ons would allow you to
test how sunlight affects plant growth?

Tes�ng

That's right!

Give all the plants plenty of sunlight each day, because plants need sunlight to grow properly.

Give half of the plants more sunlight, and the other half less sunlight, but keep everything else
the same (water, soil, temperature). Then compare how well each group of plants grew.

Put one group of plants in a warm place, and the other group in a cool place, but keep everything
else the same (water, soil, amount of sunshine). Then compare how well each group of plants
grew.

Give all the plants lots of sun for one week, and then only a li�le sunlight for one week, and see
how well the plants grow.

2.4.5. Problem: Measure the temperature

Which of the following code snippets would scroll Temperature:on the micro:bit display, and then show

the temperature, and repeat that un�l the program is stopped?

Tes�ng

That's right!

" Temperature: "

temperatureshow number

scroll

micro:bit loop
do

temperature

" Temperature: "scroll

show number

micro:bit loop
do

temperature

" Temperature: "scroll

show number

" Temperature: "scroll

micro:bit loop
do

2.4.6. Keep going!

So far you've programmed the micro:bit to measure the temperature, and put together a soil moisture
probe. We're making great progress — you'll have a Smart Garden in no �me!

Up next we'll find out how to control the micro:bit with its built-in bu�ons!

3
BUTTONS & CUSTOM IMAGES

3.1. Controlling micro:bit with bu�ons

3.1.1. Take control!

So far, our micro:bit programs have been basic: show an image, scroll some words, display the temperature,
that sort of thing.

To make more complicated and interes�ng programs, we need to get the micro:bit working a bit harder.
We need to learn how to tell the micro:bit to do what we want, when we want — by using its built-in
bu�ons!

By the end of this part of the challenge, you'll have mastered:

making decisions in your programs with if and if/else blocks

using the micro:bit bu�ons to do different things in your programs
displaying custom images on the micro:bit display

3.2. Making decisions with bu�ons

3.2.1. Bu�on A and Bu�on B

The BBC micro:bit has two bu�ons, labelled A and B.

Photo by Gareth Halfacree, CC BY-SA 2.0.

Using these bu�ons, we can make the micro:bit do different things when we press the different bu�ons.

The button A is pressed block can be used to see if a bu�on is currently pressed.

3.2.2. Making decisions

All our programs so far have shown images, or measured the temperature and scrolled it on the display.
We call this "output" — and our programs have done the same thing every �me we run them.

We also want our programs to react to things — for example, pressing a bu�on. We call this "input".

This flowchart describes a process (or algorithm) that makes the program run differently if a bu�on is
pressed:

The diamond requires a yes or no decision — the answer determines which line we follow. If the answer is

yes, we do the extra step of showing the image. If the answer is no no, we skip it.

3.2.3. Using the if block

We can use an if block to make the decision in the orange diamond of the flowchart: is bu�on A being

pressed?

Try running this program and then pressing Bu�on A.

It doesn't work! Why not?!

Because the code runs too fast — the program ends before we can press the bu�on!

We need to keep checking whether the bu�on is pressed ...

Use your mouse or keyboard

Press the bu�ons in the examples either by clicking with your mouse, or by pressing A or B on your
keyboard.

3.2.4. Decisions inside the loop

We fix this by pu�ng the if block inside a loop :

Try running this example, and pressing bu�on A (or the A on your keyboard):

button A ▾ is ▾ pressed

image Animals ▾ DUCK ▾show

if

do

button A ▾ is ▾ pressed

image Animals ▾ DUCK ▾show

if

do

micro:bit loop
do

Now it works! Whew!

The if block only runs the show block if Bu�on A is pressed — and the loop keeps running, around and

around, checking if Bu�on A is pressed or not.

3.2.5. Decision loop flowchart

Here's a flowchart for a decision inside a loop:

See how it works? Follow the arrows around the loop:

Is the bu�on pressed?
Yes! OK, show the image.
No! OK, no image then.
... and around the loop we go!

Is the bu�on pressed?
Yes! OK, show the image.
No! OK, no image then.
... and around the loop we go!

Is the bu�on pressed?
...

(... you get the idea.)

3.2.6. Problem: Rain, rain, go away!

Rain, rain, go away ... or at least let me get my umbrella!

Write a program to scroll Rain, GO! when bu�on A is pressed.

1 Make an If block, so that if the A bu�on is pressed, then scroll the words Rain, GO!

2 Put the if inside a loop so that it checks if the bu�on is pressed forever!

Here's what your code should do — in the example below, click on and press the A bu�on to try it out.

You'll need

Tes�ng

Checking that your code contains an infinite loop.

Tes�ng that the display starts off being blank.

Tes�ng that the display scrolls correct words down when the A bu�on is pressed.

Tes�ng that it went back to a blank screen a�erwards.

Tes�ng that it con�nues to work mul�ple �mes.

 program.blockly

micro:bit loop
do

" "scroll

if

do button A ▾ is ▾ pressed

3.3. More decisions!

3.3.1. What if s?

The micro:bit has more than one bu�on.

We can use more than one if !

Run the example below, and try pressing the A and B bu�ons!

You can change the micro:bit images using bu�ons! ☔ 😀

button A ▾ is ▾ pressed

image Other ▾ UMBRELLA ▾show

button B ▾ is ▾ pressed

image Faces ▾ HAPPY ▾show

if

do

if

do

micro:bit loop
do

3.3.2. Problem: Sun or rain?

Will it be sunny today, or pour with rain?

Make your own weather predictor: write a program to scroll Sun! if bu�on A is pressed, and Rain! if B is

pressed.

You'll need a loop block, and two if blocks — so we've made sure you have those. The rest is up to you!

Run this example to see how your code should work — try pressing A and B:

You'll need

Tes�ng

Checking that your code contains an infinite loop.

Tes�ng that the display starts off blank.

Tes�ng that it scrolls "Sun!" when the A bu�on is pressed.

Tes�ng that it scrolls "Rain!" when the B bu�on is pressed.

Tes�ng that it scrolls "Sun!" then "Rain!" when the A bu�on then the B bu�on is pressed.

Tes�ng that it con�nues to work mul�ple �mes.

 program.blockly

micro:bit loop
do

if

do
if

do

3.3.3. Decisions with two op�ons

So far, we've asked if the bu�on is pressed, and if the answer is "yes", we have displayed an image. But we
didn't actually do anything if the answer was "no", the loop just started again.

Some�mes when we make a decision, we might care about both answers. If we ask "Is the bu�on
pressed?" we could:

Show an image if the answer is "yes".
Hide the image (clear the display) if the answer is "no".

That's the decision shown in this flowchart:

3.3.4. The if/else block

For decisions with two op�ons we use the if/else block.

Run the example below, and then press the A bu�on.

What happens if you press A again? Or hold down A?

button A ▾ is ▾ pressed

image Animals ▾ DUCK ▾show

clear display

if

do

else

micro:bit loop
do

When A is pressed, the image appears. When it is not pressed, the image goes away because the program

runs clear display .

3.3.5. Problem: Smile for the camera!

Smile for the camera! 📸**click!**😀

Let's pretend the micro:bit is a camera, and Bu�on A takes your photo. You have to smile when the bu�on

is pressed ... but when it's not pressed, you don't have to.

Write a program that shows a happy face image Faces HAPPY while Bu�on A is pressed, and a sad face

image Faces SAD when no bu�on is pressed.

We've given you a start — your job is to fill in the gaps in the if and else blocks to show the correct

images.

Here's what it should look like — click to run and then try pressing the A bu�on:

You'll need

Tes�ng

Checking that the display starts off showing a sad face.

Checking that it becomes happy.

Expected that it went back to a sad face a�er the bu�on was released.

Tes�ng that it con�nues to work mul�ple �mes.

 program.blockly

if

do

else

micro:bit loop
do

button A ▾ is ▾ pressed

3.4. BYO images

3.4.1. LEDs on display

So far, every �me we've used an image, it's been from micro:bit's collec�on of built-in images — like the
duck, the giraffe, the heart, the smiley-face.

What if you want to show something that isn't in the micro:bit's list of images? What if you want to make
your own image? 🤔

3.4.2. Five by five

It's easy to make your own images for the micro:bit. You just need to tell it which lights on the display to
turn on.

The display is a 5-by-5 grid of LEDs, and we can tell the micro:bit to turn them on and off as we like using

the custom image block — here's an example, click to see what the custom image is:

3.4.3. Make your own image

In the custom image block, we use 25 numbers to control the 25 LEDs. Each number tells an LED how

bright it should be:

" 90909:09990:99999:09990:90909 "custom imageshow

a 0 means the LED is off
numbers from 1 to 8 make the LED brighter and brighter
a 9 turns the LED is on as bright as it can go

For each row of five LEDs we write five numbers, followed by a colon (:) — and so we end up with five lots
of five numbers, like this:
90000:09000:00900:00090:00009

Run the example below to see what image those numbers make:

It turns on the first LED in the first row, the second LED in the second row, the third LED in the third row
... you get the idea?

What image do you get if you change the numbers in the example above to:
11111:33333:55555:77777:99999?

What about
00000:09090:00000:90009:09990?

Copy those into the example and run to see if you guessed right!

" 90000:09000:00900:00090:00009 "custom imageshow

3.4.4. Problem: A bit of sunshine

The sun is coming out! 🔆😎

Create your own custom image of the shining sun — click to see what it looks like:

The image is created from these numbers:
60906:06960:99999:06960:60906

1 show a custom image

2 Copy the numbers above into the custom image block

Easy, isn't it?

Tes�ng

Tes�ng that the display is showing the sun image.

3.4.5. Custom Image Playground

Make your own images! (This part is just for messing around to see what you can come up with.)

What do you think these numbers would make in the custom image block?
00900:00900:00900:00000:00900

Run! the example below! to see! if you're right!!!!

Now try out your own images — change the numbers in the example to make any image you like. See if
you can make a face, or an animal.

Remember you always need five groups of five numbers, with a colon (:) between them.

Try different brightnesses — remember 9 is bright, 5 is medium brightness, 1 is very dim, and 0 is off.

" 00900:00900:00900:00000:00900 "custom imageshow

3.5. Even more decisions!

3.5.1. if else if else if else if else ...

Some�mes, there are lots of different possible decisions. For example, your program could show a duck if
bu�on A is pressed, a giraffe if bu�on B is pressed ... and show nothing at all if no bu�on is pressed.

We can program these complex decisions by using if and else if blocks, like this:

The if does bu�on A and shows a duck, and else if does bu�on B and shows a giraffe. The final else
captures all other decisions — in this case, that's just pushing neither of the bu�ons! Try it out by clicking
 and trying out the two bu�ons:

button A ▾ is ▾ pressed

image Animals ▾ DUCK ▾show

button B ▾ is ▾ pressed

image Animals ▾ GIRAFFE ▾show

clear display

if

do

else if

do

else

micro:bit loop
do

3.5.2. Problem: Whatever the weather

Sunshine 🔆? Or rain 💧?

Time to update your weather predictor! Write a program that will display:

a custom image of the sun if bu�on A is pressed

a custom image of a raindrop if bu�on B is pressed, and

a custom image of a ques�on mark when no bu�on is pressed.

We have given you a start already — your job is to put the blocks in place, and add the custom images.

The custom images are created from these numbers:

Sun: 60906:06960:99999:06960:60906

Raindrop: 00600:06960:69996:69996:06960

Ques�on mark: 09990:90009:00990:00000:00900

Click to see what your program should look like — try pressing bu�ons A and B:

You'll need

 program.blockly

button A ▾ is ▾ pressed

show

if

do

else if

do

else

micro:bit loop
do

" "custom image

" "custom imageshow

show button B ▾ is ▾ pressed

" "custom image

Tes�ng

Tes�ng that the display is showing a ques�on mark at start.

Tes�ng that the display is showing the sun image when A is tapped.

Tes�ng that the display is showing the raindrop image when B is tapped.

3.6. Summary

3.6.1. Problem: Tortoise and Hare

Which of the following code snippets will correctly display an image of tortoise whenever the micro:bit's
bu�on A is pressed, and an image of a hare (OK, a rabbit then) whenever bu�on B is pressed, but no image
at all when no bu�on is pressed?

Tes�ng

That's right!

3.6.2. Up Next: Smart Garden!

You're ready!

You've got your temperature sensor and your soil moisture sensor. You know about loops , and making

decisions with bu�ons and if/else blocks. You can make your own custom images .

It's �me to put it all together to make your very own Smart Garden.

4
PUTTING IT ALL TOGETHER

4.1. Let's make a Smart Garden

4.1.1. Piece by piece

You're ready to put together your final Smart Garden project. Here's what you're going to make in this last
part of the challenge:

First, you'll write code to measure the temperature when Bu�on A is pressed, and display the
temperature with a custom image.
Then you'll make a program to measure soil moisture when Bu�on B is pressed, and display it with a
happy face if there is enough water, or a sad face if the soil is dry.
Finally, you'll put it all together, with code to display a custom flower image when no bu�on is
pressed.

Here's the video again of the Smart Garden in ac�on:

Your final project. (h�ps://groklearning-cdn.com/modules/cU5geH65oKwqHZLrVZLEZg/SmartGarden4.mp4).

0:00 / 0:43

https://groklearning-cdn.com/modules/cU5geH65oKwqHZLrVZLEZg/SmartGarden4.mp4

4.2. First, the temperature bu�on

4.2.1. Problem: Temperature on A

First you'll create the temperature sensor. Build a program that, when bu�on A is pressed, measures the

temperature and displays it nicely with a custom sunshine image like this: 🔆 28 deg

When no bu�on is pressed, the program should clear the display.
When bu�on A is pressed, it should display a custom image of the sun from the numbers

60906:06960:99999:06960:60906 for one second, then scroll the temperature reading, and then

scroll deg

Your program should run like this — click and then press bu�on A:

Hint

You're going to need a loop block and an if/else block. You'll also need to remember how to sleep !

Tes�ng

Checking that your code contains an infinite loop.

Tes�ng that the screen is blank at the start.

Tes�ng that an image of the sun is displayed.

Tes�ng that the sunshine image image appears for 1 second.

Tes�ng that your program scrolls the temperature.

Tes�ng that deg scrolls past.

Tes�ng that the code works for different temperatures.

4.3. Then, the soil moisture bu�on

4.3.1. if comparisons

We have seen how to use if blocks using bu�ons to make decisions. But there are other ways to make a

decision.

For example, you could make a decision based on the temperature — if it's less than 20 degrees, you're

sad, but if it's 20 degrees or warmer, you're happy!

The way we do this sort of decision is with a comparison block — try out this example:

The comparison block can compare two numbers in all sorts of ways — you can make a decision when

the first number is:

greater than > the second number

greater than or equal to ≥ the second number

less than < the second number

less than or equal to ≤ the second number

equal to = the second number

not equal to ≠ the second number

Try changing the example by clicking on the < and choosing a different comparison. What happens if

you change the number 20 to 30 ? Give that a try, and run the example again.

4.3.2. Comparison flowchart

The flowchart for a decision that compares two numbers looks like this:

temperature 20< ▾

image Faces ▾ SAD ▾show

image Faces ▾ HAPPY ▾show

if

do

else

4.3.3. Problem: Water me, please!

We want our soil moisture sensor to tell us when the plant needs watering.

Remember that low numbers mean the soil is dry, and high numbers mean the soil is moist? Write a
program to read in the moisture level from the sensor connected to pin0, and then:

If the reading is 600 or more, the program should scroll

I'm OK!

Otherwise (when the reading is less than 600), the program should scroll Water me!

We've given you an if/else block and a comparison block to get you started. You also need to keep the

program running with a loop , so you can test it with different moisture levels.

You'll need the right kind of comparison — click on the = to choose from the different comparisons.

Your program should run like this — click to see, and move the moisture slider up and down:

You'll need

Tes�ng

Checking that your code contains an infinite loop.

Tes�ng that the display scrolls "Water me!" when moisture is 300.

Tes�ng that the display scrolls "I'm OK!" when moisture is 900.

Tes�ng that the display scrolls "I'm OK!" when moisture is 600.

Tes�ng that the anima�on loops con�nuously.

 program.blockly

if

do

else
0= ▾

4.3.4. Problem: Moisture on B

OK, �me to write the full moisture sensor program.

Here's how it's going to work — when bu�on B is pressed, do the following:

show a custom image of a raindrop for one second, using the image numbers
00600:06960:69996:69996:06960

Make a decision using an if/else , checking the soil moisture reading at pin0

If the soil moisture is < 600 , the soil is dry — so show a sad face image for one second

Otherwise (if the soil moisture is 600 or greater), it has enough water — so display a happy face
image for one second

finally, scroll the moisture reading

Hint!

This one's tricky — you'll need an if/else block inside an if block! We've given you both of them, your

job is to work out where they go, and fill in the gaps.

Your program should run like this — click and press bu�on B:

You'll need

Tes�ng

Checking that your code contains an infinite loop.

Tes�ng that the raindrop image image appears.

Tes�ng that the raindrop image image appears for 1 second.

Tes�ng that the HAPPY face image appears.

 program.blockly

micro:bit loop
do

if

do
0= ▾if

do

else

Tes�ng that the SAD face image appears for low moisture.

Tes�ng that the HAPPY face stays for 1 second.

Tes�ng that the SAD face stays for 1 second.

Tes�ng that your program does everything.

4.4. Hello, Smart Garden!

4.4.1. Problem: The Full Smart Garden!

Now it's �me to put everything together! 🌷🔆💧

Write the full Smart Garden program that does the following:

If bu�on A is pressed:

scroll T:

then scroll the temperature reading
then scroll deg

If bu�on B is pressed:

display a custom image of a raindrop from the numbers 00600:06960:69996:69996:06960 for

one second
then make a decision about how dry the soil is

if the soil moisture reading on pin0 is < 600, show a sad face image for one second

otherwise (if moisture ≥ 600), show a happy face for one second
a�er the sad/happy face, scroll the moisture reading

When no bu�on is pressed, the micro:bit displays a custom image of a flower, using the image
numbers 00900:09590:00900:50505:05550

We've given you parts of the solutuions to the previous "Temperature on A" and "Moisture on B" problems.
Your job is to bring everything together into one program that does it all!

Your program should run like this — click , press the bu�ons and move the sliders:

You'll need

Tes�ng

Checking that your code contains an infinite loop.

Tes�ng that the display starts with the flower image.

Tes�ng that the flower image stays for 1 second.

Tes�ng that the display scrolls T.

Tes�ng that the display scrolls the temperature reading.

Tes�ng that the display scrolls deg.

Tes�ng that the en�re temperature reading works.

Tes�ng that the raindrop image appears for bu�on B.

Tes�ng that the raindrop image appears for 1 second.

Tes�ng that the HAPPY face appears for high moisture.

Tes�ng that the HAPPY face stays for 1 second.

Tes�ng that the SAD face appears for low moisture.

Tes�ng that the SAD face stays for 1 second.

Tes�ng that the en�re moisture part works.

Tes�ng that the en�re program works.

 program.blockly

" "

temperature

" "scroll

scroll number

scroll
" "custom image

10

read analog pin0 ▾ 0= ▾

10sleep for ms

show

10sleep for ms

show

if

do

else

sleep for ms

show

4.5. You did it! High 5!

4.5.1. Congratula�ons!

You made it! You've created a Smart Garden to measure temperature and soil moisture, and along the way
you have learned:

how to show images and scroll " text " , and make your own custom images

how to show the temperature , and connect probes to the micro:bit pins to read soil moisture

how to use if/else and the micro:bit's bu�ons to make decisions

how to compare numbers to help make decisions

Now that you have your Smart Garden, you can use it for some scien�fic inves�ga�ng ...

4.5.2. A Smart Garden Inves�ga�on

There are lots of different inves�ga�ons you could do, using your Smart Garden to help look a�er your
plants. You could:

inves�gate how plants grow at different temperatures
see whether different amounts of water affects how well seeds germinate
test how changing the amount of sunshine that plants get affects their growth

In that last idea, for example, you could use the Smart Garden to make sure the temperature and soil
moisture is kept the same for all plants in your inves�ga�on — while giving different groups of plants
different amounts of sunlight. This helps you to make sure this is a fair test.

We have created an inves�ga�on that you might like to try out, called "How To Care For Your Plant!". You
can download the inves�ga�on worksheet here (h�ps://groklearning-
cdn.com/modules/vgxnevP8WvyWyKKQvoc2jV/ACA-SmartGardenInv-56.pdf).

https://groklearning-cdn.com/modules/vgxnevP8WvyWyKKQvoc2jV/ACA-SmartGardenInv-56.pdf

 (h�ps://groklearning-

cdn.com/modules/vgxnevP8WvyWyKKQvoc2jV/ACA-SmartGardenInv-56.pdf)
How To Care For Your Plant! (h�ps://groklearning-cdn.com/modules/vgxnevP8WvyWyKKQvoc2jV/ACA-SmartGardenInv-56.pdf)

https://groklearning-cdn.com/modules/vgxnevP8WvyWyKKQvoc2jV/ACA-SmartGardenInv-56.pdf
https://groklearning-cdn.com/modules/vgxnevP8WvyWyKKQvoc2jV/ACA-SmartGardenInv-56.pdf

4.5.3. Problem: Blockly micro:bit Playground

This is the Smart Garden micro:bit playground! Use the blocks to build anything you like.

No marks are awarded here — it's a place where you can just muck around and see what you can build.
We've included all of the blocks you've used so far, and a bunch of new ones you may not have seen
before. Explore, try out different things, make something new.

Save or submit your code!

There are no points to be earned for this ques�on, so you can submit whatever code you like. Make
sure you save programs that you want to keep!

You'll need

Tes�ng

It's a playground --- nothing to mark!

 components.json

