Australian
(111 -

muEnrumm Computing
IEE~EEEE

‘= "mm" Academy
a

DT Challenge Blockly
Smart Garden

1. Displaying images and text
2. Sensors and pins
3. Buttons & Custom Images

4. Putting it all together

L-H:_(https://creativecommons.org/licenses/bv/4.0/)

The Australian Digital Technologies Challenges is an initiative of, and funded by the
Australian Government Department of Education (https:/www.education.gov.au/).

© Australian Government Department of Education.

https://creativecommons.org/licenses/by/4.0/
https://www.education.gov.au/

DISPLAYING IMAGES AND TEXT

1.1. Let's get started

1.1.1. Sensing the world around you

o

A biolo uses sensors t esure ‘0| emperture an mistu. Pblic mai, NPS photo.
(https:/www.flickr.com/photos/alaskanps/8446139444)
Scientists measure the world around us using all sorts of devices. For example, biologists studying plant
growth use thermometers to measure temperature, light meters to measure how the Sun's brightness, and
moisture sensors to measure how wet the soil is. Many of these devices run on simple computers.

In this course you'll make your own Smart Garden device, using the BBC micro:bit. Along the way, you'll
learn three things:

« how the growth and survival of living things are affected by physical conditions of their environment

« how to write computer programs for the micro:bit with Blockly

« how to use the micro:bit's built-in sensors and external connections to measure the world around
you

1.1.2. Introducing the BBC micro:bit!

The BBC micro:bit (https:/www.microbit.co.uk/) is a tiny computer. You can program it with blocks .

https://www.flickr.com/photos/alaskanps/8446139444
https://www.microbit.co.uk/

The micro:bit has:

5 x 5 LEDs (light emitting diodes)

two buttons (A and B)

an accelerometer (to know which way is up)

a magnetometer (like a compass)

a temperature sensor

a light sensor

Bluetooth (to talk to other micro:bits and phones)

pins (gold pads along the bottom) to connect to robots and electronics!

Q If you don't have a real micro:bit ...

Don't worry! You can still do this course. We have a simulator which works like a real micro:bit.

1.1.3. DIY Smart Garden

We're going to build a device with the micro:bit called a Smart Garden. It will use the built-in temperature
sensor, and you will learn how to connect a home-made soil moisture probe to the micro:bit.

By the end of this challenge, your Smart Garden will:

- measure the temperature when you push one of the micro:bit's buttons
« measure the amount of moisture in the soil when the other button is pressed
« display the temperature and moisture levels using special, customised images

The micro:bit Smart Garden in action! (https:/groklearning-cdn.com/modules/cU5geH650KwqHZLrVZLEZg/SmartGarden4.mp4).

https://groklearning-cdn.com/modules/cU5geH65oKwqHZLrVZLEZg/SmartGarden4.mp4

1.2. Displaying images

1.2.1. Hello, micro:bit!

Let's jump right in with a program on the micro:bit — put an image on the LED display:

1) Dragthe block into the hole in the block.

2) Click » to run the program. It shows a happy face!

W Faces - HAPPY - |

Congratulations! You've written your first micro:bit program!

1.2.2. Change the face

Let's put a different image on the display!
1) Dragthe block into the hole in the block.
2) Change the to something other than HAPPY

3) P Run it to show your image!

b/ [LE:[Animals - "BUTTERFLY - ||

show '

You changed the image! Nice work! Play around with the example above to see all the different images the
micro:bit has.

Q Can you make your own images?

We'll see later on how to make your own images for the micro:bit.

1.2.3. Problem: Happy micro:bit!

Let's get the micro:bit to show a smiley face.

Follow the steps to complete your first problem:

1 « Join the in the problem editor together.

2‘ Click the P button.

Run

3' Click the Y button to Submit.
Mark

You'll need

program.blockly

show '

b - Faces - HAPPY - ||

Testing
(0 Testing that the display is showing a happy face.

O Congratulations, you've written your first micro:bit program!

1.2.4. Building Blocks

You won't always have the blocks you need ready to go — sometimes you'll need to gather more blocks to

make your program.

To get a new block:

1) Click the micro:bit drawer (this is the micro:bit button on the grey part of the screen).
2) Dragthe
3) Make your program!

program.blockly »

I micro:bit

L3

Dragging blocks from the drawer

1.2.5. Problem: Wascally Wabbit =

In this course, you're going to learn a bit about plants and their environments.

We can't easily show an picture of a plant on our micro:bit ... but we can show an animal! So let's make the
display show a rabbit, like in this example:

1) Click the micro:bit drawer.

2) Dragthe block.

3) Create the program to show a rabbit.

4 » and % vyour program.
Run Mark

5) Yay! You have made a fluffy micro:bit rabbit!

Q Where's the rabbit?

You can find the rabbit image in the Animals list.

You'll need

program.blockly

o[[Ei[Faces - "HAPPY - |

Testing
(0 Testing that the display is showing a rabbit.

O Congratulations! You made a cute bunny wabbit!

1.2.6. Downloading
If you have a micro:bit, you can see your program in real life! Put your code onto the micro:bit like this:

@ Clickthe & button. You will get a . hex file on your computer.
Do

wnload

@ Plug your micro:bit into your computer using the USB cable.
@ Your micro:bit will show up like a USB drive on your computer.
@ Drag the .hex file onto the micro:bit.

@ Watch the yellow light on the micro:bit flash for a few seconds.
@ See your program running on the micro:bit!

We have more detailed instructions with pictures (https:/medium.com/p/b8%fbbac2552) on our blog.

aee < 8] & & = JrOKGIMENg Com AT aUtRr meckes £H L Amrene Tt -] *

) Dok | Dispirying e ssal it

GROK - -

LEAm®ING

= .9 in! PomoB oD
= butnstiom < | % the rain! ¥ Bt Termwal Smer Downiosd Cope
E rroblem M Solutions ® Teacher's notes program.py ¥ " ¢ ¥ 4 @
fran microbtt fmpurt
Q b This guestion hasn't been refeased yet.
=1 dizplay.serall{*1')

Show how mich you like mucking, about in the rain!

Display T W the raint on the LEDs in the following way, by SHARLEY. i R A

sleep(lBb@)

o
combining the display . shew, sleep() and display.scrall display.serall sy sicrabit)®)
9 commands.
o
o * Scroll "1 on the micro:bit
< » Show s HEART for 1 second.
g * Scroll "the rain’
o
< Rememberto W your program!
e
o Your prograrm should look Rke this:
o
o
< Editing: | % the rain!
U Submissions €% Output @ Simulator "
o —
& “You don't have any submissions or saved code.
<

Lr-0-0

https://medium.com/p/b89fbbac2552

1.3. More than one

1.3.1. Giraffe Duck

OK, we can now show an image on the micro:bit. How do we show two images?

Let's try something. What if we put two image blocks together like the example below?

Click » run to see what happens:

| show (l Ijzlef=f Animals + GIRAFFE -~

[g |
S e Animals * DUCK

Uh oh! That's weird. We only see a duck!
Where did the giraffe go?

The micro:bit is really fast. It shows the giraffe, but it's too fast for us to see. We need to slow things down!

1.3.2. The block

We can stop the micro:bit going too fast using

1) Click » run.

2) The giraffe appears for 2 seconds. Then the duck appears.

show (‘ ln=e[= Animals * GIRAFFE -

sleepfor | Lo} ' ms

M
show (‘ lzle[=8 Animals + DUCK -

Q Seconds and milliseconds

The block measures time in milliseconds (or ms for short), not seconds. There are 1000
milliseconds in a second — just like there are 1000 millimetres in a metre!

So you need to remember to put the sleep time in ms — for example, to pause the micro:bit for 3

seconds you need 3000

1.3.3. How much ?

We can for different lengths of time.

The example below shows the giraffe for 5 seconds. Click » to run the example to see what happens:

show | |mage An|mals v GIRAFFE -

sleep for

show (|mage An|mals v DUCK -

Now try changing the example, like this:

1) Change (5000) to (1000)

2) Click » to run the example again. The giraffe appears for only one second now!

1.3.4. Problem: | love the rain

It's great when it rains — as long as you remember your umbrella! Write a program to an
UMBRELLA for one second, then a HAPPY face.

1 . Drag the blocks you need from the workspace.

2. Select the correct images (look in the Other list for the UMBRELLA, and in
Faces for the HAPPY face!)

3. Choose the correct amount.

4. Join the blocks together.

Here's how your program should work — click » to run the example:

Q Sleep for milliseconds

You need to use (1000) to sleep for one second.

Testing

O Testing that the display starts with an umbrella.

O Testing that the umbrella is still on the screen less than 1 second later.
(0 Testing that the display changes to a happy face after 1 second.

(0 Testing that the happy face stays on the display for 1.5 seconds.

(O Congratulations!!

1.4. Letters and words

1.4.1. Scrolling letters and words

So far we've used the display to show pictures. We can also show letters, words, even sentences, using the
block.

1) P run the example. Hello will scroll across the micro:bit.

2) Change " Hello " to your name.

3) P runthe example again to scroll your name across the micro:bit!

scroll N Hello

Now you know how to make the micro:bit display your name — awesome!

Q A string of letters

The green block is called a string.

I'm a string

1.4.2. Problem: | ¥ the rain)
Show how much you like mucking about in the rain!
Display 1 0 the rain! on the LEDs in the following way:

1) Scroll " 1" on the micro:bit.

2) Show a HEART image for 1 second.
3) Scroll " the rain!

You already have the all the you need — you just need to change them to make the program run
correctly.

Remember to your program!
Mark

Your program should run like this:

You'll need

program.blockly

scroll | " .
,—
show [114=e[=} Symbols * DIAMOND ~

scroll ¥ Goodbye &

Testing

[0 Testing that an 1 scrolls past.

(O Testing that a heart appears after the 1.

(0 Testing that the heart stays on the display for 1 second.
(0 Testing that a t scrolls past.

O Testing that the rain! scrolls past.

1.4.3. Problem: A 8 doesn't need an G!

Ducks love the rain!

Write a program to display A #¢ doesn't need an 4°:

1) Scroll " A" on the micro:bit.
2) Thenshowa DUCK for 1 second.
3) Then scroll " doesn't need an

4) Then show an UMBRELLA .

It should run like this — click » to run the example:

Testing

[0 Testing that an A scrolls past.

O Testing that a duck appears after the A.

(0 Testing that the duck stays on the display for 1 second.

(0 Testing that doesn't need an scrolls past.

O Testing that an umbrella appears after the doesn't need an.

(0 Testing that the umbrella stays on the display.

1.5. Summary

1.5.1. What do living things need?

Take a closer look at the landscape in your local area — at your school, around your home, or in the local
park. Do you notice similar sorts of plants growing in these areas?

Different plants thrive under different conditions. Some, like tomato plants require 8 hours of continuous
sunlight and warm weather ... whereas raspberries thrive in cooler weather.

They also require different amounts of water, and different soil conditions too — they like different soil
textures, and dirt with different kinds of nutrients in it.

In an earlier question, you displayed T <) the rain! on the micro:bit. Guess what, many plants) the
rain too!

1.5.2. Photosynthesis
What tomatoes and raspberries do have in common is that they use photosynthesis.

Photosynthesis is the process used by all plants and algae (and even some bacteria) to harness energy from
the sun and turn it into food.

sunlight

oxygen

Plants use the Sun's energy to make their own food through a process called photosynthesis. CC-4.0, image by AtO%kg.
(https:/commons.wikimedia.org/wiki/File:Photosynthesis en.svg)

All plants do this — but different plants have adapted to different types of soil, different amounts of water,
and different amounts of sunshine!

https://commons.wikimedia.org/wiki/File:Photosynthesis_en.svg

1.5.3. Problem: Adaptation]

Different plants have evolved to survive in very different envionments — they have adapted their shape,
size and structure to grow happily in their natural surroundings.

Which of these is not an example of plant adaptation?

A cactus that stores water in its stem.

Rainforest plants with large, waxy leaves that catch sunlight and let water run off.

Water lilies with leaves and flowers that float on the water surface.

Tomato plants grown in a garden greenhouse to keep out the frost.

Testing
(OJ That's right!

1.5.4. Problem: Plants love sunshine! Ed

Which of the following code snippets will correctly display Plants 0 sunshine! on the micro:bit's
LEDs?

O
scroll : " "
show: | image ST R LLURS |
sleep for : 1000 ' ms
scroll : '

@)
scroll : . "
show | image ST RBGII LIRS
scroll : '

o
scroll : . "]
sleep for : 1000 | ms
U ECE Symbols — HEART - |
scroll : '

@)
scroll n "]
SCUHERT Symbols + THEART)
sleep for . 1000 | ms
scroll v | sunshine & '

Testing

O That's right!

1.5.5. Congratulations!

Well done! You finished Module 1 — you're on your way to making your micro:bit Smart Garden!
We learned about:

« what's in the BBC micro:bit

« how to show an on the micro:bit
« choosing your own

+ making the micro:bit wait with

« scrolling " strings " on the micro:bit

« joining together to make more things happen

Click 9 to learn how to use the micro:bit's temperature sensor, and build your own soil moisture sensor.

SENSORS AND PINS

2.1. Sensors and loops

2.1.1. What's needed for good science?
Testing predictions is an important part of science. To do this, scientists collect data and use evidence.

There are so many different types of data that scientists collect, and they use lots of different instruments
and methods to collect it!

e = b b g : b . b il < o = -
drologist measures streamflow (image by Deena Green (“https:/www.flickr.com/photos/usgeologicalsurvey/15303060773"),

Public Domain. Middle: Scientific weather station (image by Michal Osmenda
(“https:/commons.wikimedia.org/wiki/File:Weather station on Mount Vesuvius (2437693238).jpg”), CC-2.0. Right: Seismograph used to
measure earthquakes (image by Yamaguchi’t:/E: (“https:/commons.wikimedia.org/wiki/File:Kinemetrics seismograph.jpg”), CC-3.0.)

Left: A hy,

During this challenge, You'll learn the skills to collect data with the micro:bit Smart Garden, which you can
use to make predictions about the health of your plants.

2.1.2. Senses and sensors

In the olden days, a farmer might go outside to see what the sky looked like to work out whether they had
to bring the sheep in. These days, many farmers use technology and data to get weather predictions.

https://groklearning.com/print/aca-dt-56-bk-microbit-garden/%E2%80%9Chttps://www.flickr.com/photos/usgeologicalsurvey/15303060773%E2%80%9D
https://groklearning.com/print/aca-dt-56-bk-microbit-garden/%E2%80%9Chttps://commons.wikimedia.org/wiki/File:Weather_station_on_Mount_Vesuvius_(2437693238).jpg%E2%80%9D
https://groklearning.com/print/aca-dt-56-bk-microbit-garden/%E2%80%9Chttps://commons.wikimedia.org/wiki/File:Kinemetrics_seismograph.jpg%E2%80%9D

victoria-landscape-63729/"). Weather station image by (image by Ché Lydia Xyang
(“https:/commons.wikimedia.org/wiki/File:Rosalie Park weather station - panoramio.jpg”), CC-3.0.)

We can use technology to collect data about our plants. Why? Well, with good data, we can make good
decisions! If the data tells us that the plants are getting too much water, then we can reduce the volume of
water (or how often we water them), giving the plants the best chances of survival.

Humans generally use their senses (sight, hearing, smell, taste, touch) to collect data and make decisions. If
you feel hot when you go out, then that's your skin collecting the data and sending it to your brain, helping
you make the decision to wear sunscreen and a hat!

The micro:bit doesn't have the senses we do, but it does have some cool sensors — these can collect
information about the world, and send it back to the micro:bit's 'brain’, it's central processor unit (CPU).

We'll be using these sensors to collect data about the health of our plants.

2.1.3. micro:bit the mega-sensor!
The micro:bit has a bunch of built-in sensors that are really handy for measuring the world around us.

It can measure the temperature, how bright the light is, whether it's moving around or staying still — it
even has a built-in compass!

Plus, you can connect things to the micro:bit through the connection points — called pins — along the
bottom edge.

https://groklearning.com/print/aca-dt-56-bk-microbit-garden/%E2%80%9Chttps://pixabay.com/photos/cattle-australia-victoria-landscape-63729/%E2%80%9D
https://groklearning.com/print/aca-dt-56-bk-microbit-garden/%E2%80%9Chttps://commons.wikimedia.org/wiki/File:Rosalie_Park_weather_station_-_panoramio.jpg%E2%80%9D

Light
sensor

Temperature
sensor

Motion

n r
Compass SSHIS0

Pins for connecting
more stuff!

We can use a few of these sensors to help look after our plants. First, we're going to find out how to make
a program to measure the temperature.

2.2. Temperature sensor

2.2.1. What's the temperature?

The micro:bit's built-in temperature sensor is really easy to use — you just need the block.
You put it inside a block like this:

| scroll number (temperature

The sensor tells you the temperature in degrees celsius, °C. (In this example, the temperature is always
28°C!)
Q Scrolling Numbers

The temperature sensor gives the temperature as a number, not a string. Numbers and strings are
treated differently by computers, so you need to use a block instead of a block.

2.2.2. Problem: The temperature is ... 53

The block just gives you a number — which is boring!

Our Smart Garden should be a bit fancier, so write a program that shows the temperature in a nicer way.
For example, if the temperature is 28°C, the micro:bit scrolls T: 28 deg across the display like this:

1) First,scroll " T: " on the micro:bit.
2) Then scroll the

3) Finally, scroll " deg

Remember to your program!
Mark

Q Temperature is a number!

So remember to use a block!)

Testing
(O Testing that an T: scrolls past.
(O Testing that your program scrolls the temperature.

(0 Testing that deg scrolls past.

2.2.3. Looping forever

So far, our programs make the micro:bit do something, and then stop. But what if we want the micro:bit to
keep running forever?

We can use a micro:bit loop block to repeat code over and over. In the example below, the images will
keep repeating until you stop it:

micro:bit loop

S0 kL Animals ©+ BUTTERFLY - ||

sleep for 1000 ' ms

TR Faces * HAPPY - }

sleep for 1000 ' ms

Q You have to click B to stop!

Don't forget to use the M button to turn off the micro:bit, otherwise it will keep running forever.

2.2.4. Weather update!

Now we can make a program that keeps checking the temperature!

In the example below, drag the scroll number block inside the micro:bit loop block, and » run the
program:

micro:bit loop

scroll number | temperature

28°C

The micro:bit keeps scrolling the temperature until you tell it to stop!

Q Change the temperature!
See the temperature slider next to the micro:bit in the example above? When the program is running,

you can drag the slider up and down to change the temperature, and see the number change on the

micro:bit's display.

2.2.5. Problem: What's the temperature NOW?]

We want our Smart Garden to measure the temperature, and keep updating it until we tell it to stop.

Write a program that scrolls the temperature nicely — so if it is 28°C, the display scrolls T: 28 deg — and
repeats that until you stop it:

1) Geta block

2) Puta block inside to display " T:

3) Thenputa block to show the

4) Finally, put another block to display " deg

Your program should run like this:

26°C

Testing

(0 Testing that an T: scrolls past.

O Testing that your program scrolls the temperature.
O Testing that deg scrolls past.

(0 Checking that your code contains an infinite loop.
(0 Testing that the display goes back to scrolling T.

[Testing that the animation loops continuously.

2.3. Soil Moisture sensor

2.3.1. Hooking up the probes

OK, you've worked out how to get the micro:bit to measure temperature. Now it's time to make a soil
moisture sensor.

Yes — make! The micro:bit doesn't have a moisture sensor built in. But that's OK, it's easy to make one
yourself. You'll need:

» two metal probes to stick into the soil — good, thick metal nails will do the job!
« two leads with crocodile clips on each end (some people call them alligator clips).

Use the leads to connect the nails to the gold pins along the bottom edge of the micro:bit — you can see in
the picture below how to connect your two probes:

Power
or battery
pack

The other
connected
to l‘3vll

One nail
connected
toPin0

How to hook up the soil moisture probes.

That's all you have to do! Now, to write the code ...

2.3.2. Measuring moisture
Soil moisture sensors work by sending some electricity through the soil from one probe to the other.

« If there is lots of moisture in the soil, the electricity can flow easily,
« but if the soil is dry, it's hard for electricity to flow.

With the nail probes connected to the pins, the micro:bit sends electricity through the soil from the 3v pin,
and then we read how much electricity we get at pine with a pin0 block.

Run » the example below, and try moving the slider on the moisture scale next to the micro:bit:

micro:bit loop

scroll number | read analog (I

211

The micro:bit keeps measuring and displaying the moisture level until you tell it to stop.

But hold on — the sensor is displaying numbers, but what do the numbers mean??

2.3.3. Wet and dry

Our micro:bit doesn't know it's measuring soil moisture — it just knows it's reading some electricity at
pino!

The block measures this electricity as a number from 1 to 1023. So we need to work out
what these numbers mean.

+ High numbers mean pino is reading lots of electricity. That happens when the soil is very wet.
« Low numbers mean pino is reading very little electricity, which means the soil is dry.

1023 Wet

High reading
at PinO

Low reading
at Pin0

PinO readings for wet and dry soil.

2.3.4. Wet and dry video

Here's video showing the Smart Garden moisture sensor at work, with dry soil and wet soil.

Dry soil, low readings. Wet soil, high readings. (https:/groklearning-
cdn.com/modules/yprjyPs3K8HUAk3wPWZwcR/SmartGardenWetDry3.mp4).

You can see that with the dry soil, the sensor reading is around 300, and for the wet soil it is over 1000.

So higher numbers mean more moisture!

https://groklearning-cdn.com/modules/yprjyPs3K8HUAk3wPWZwcR/SmartGardenWetDry3.mp4

2.3.5. Problem: Moisture sensor Ed

Your Smart Garden device needs to measure how wet the soil is, and to keep measuring until you tell it to
stop.

Write a program that measures the soil moisture, displays it in an elegant way, and repeats until you stop
it.

For example, if the moisture reading is 759, then the display should scroll M: 759.

1) Geta block

2) Puta block inside the loop, and set it to scroll " M:

3) Puta block inside the loop

4) Then puta block inside the scroll number block, and make sure it is set to Pine

Your program should run like this:

211

Testing

(0 Testing that the display starts with M:.

(0 Testing that the display scrolls the moisture reading.
O Checking that your code contains an infinite loop.
[J Testing that the display goes back to scroll M:.

O Testing that the display scrolls a range of moisture readings.

2.4. Doing investigations

2.4.1. Science and measurement
If you were going to do a scientific investigation on plant growth, you might wonder:

« How does changing the temperature affect the way plants grow?
« How does changing the amount of water I'm giving them affect their growth?

Now you can make a micro:bit measure the temperature, as well as hook up a moisture sensor — so you
could use your micro:bit to help you do your investigation!

2.4.2. Change one thing only

Let's say you have some plants. Some of them you water every day, and keep them in a nice warm spot.
And some of them you water only once a week, and you keep them in a colder part of the room.

After a week, the first bunch of plants are growing well, but the second bunch don't seem very happy.
Was it the regular watering that helped the plants to grow? Or the temperature? Or both??
You don't know. So this is really important:

If you're doing an investigation you need to only change one thing between the two groups of plants, and
keep everything else the same.

2.4.3. ... keep everything else the same!

If you decide to change the temperature for one bunch of plants, you need to make sure that everything
else is the same for all the plants in your investigation.

They all need the same amount of water each day, the same amount of sunlight, the same kind of soil, ...
everything you can think of.

That way, if you do see a difference in the way some of the plants are growing, you can be pretty sure it
was because of the different temperatures — because that was the only thing that was different!

2.4.4. Problem: Plant investigation]

You're interested in seeing how plants grow with different amounts of sunlight. You have two sets of
plants, all the same type, in the same kind of soil. Which of the following investigations would allow you to
test how sunlight affects plant growth?

Give all the plants plenty of sunlight each day, because plants need sunlight to grow properly.

Give half of the plants more sunlight, and the other half less sunlight, but keep everything else
the same (water, soil, temperature). Then compare how well each group of plants grew.

Put one group of plants in a warm place, and the other group in a cool place, but keep everything
else the same (water, soil, amount of sunshine). Then compare how well each group of plants
grew.

Give all the plants lots of sun for one week, and then only a little sunlight for one week, and see
how well the plants grow.

Testing
O That's right!

2.4.5. Problem: Measure the temperature =

Which of the following code snippets would scroll Temperature:on the micro:bit display, and then show
the temperature, and repeat that until the program is stopped?

@)
micro:bit loop
i B Temperature:
show number (temperature .
L~ .
@)
micro:bit loop
do | show number | temperature |
B Temperature: i
L |
o
show number | temperature |
-l B Temperature:
O
micro:bit loop
o B Temperature:
L |
Testing

O That's right!

2.4.6. Keep going!

So far you've programmed the micro:bit to measure the temperature, and put together a soil moisture
probe. We're making great progress — you'll have a Smart Garden in no time!

Up next we'll find out how to control the micro:bit with its built-in buttons!

BUTTONS & CUSTOM IMAGES

3.1. Controlling micro:bit with buttons

3.1.1. Take control!

So far, our micro:bit programs have been basic: show an image, scroll some words, display the temperature,
that sort of thing.

To make more complicated and interesting programs, we need to get the micro:bit working a bit harder.
We need to learn how to tell the micro:bit to do what we want, when we want — by using its built-in
buttons!

By the end of this part of the challenge, you'll have mastered:

« making decisions in your programs with and blocks
« using the micro:bit buttons to do different things in your programs
« displaying custom images on the micro:bit display

3.2. Making decisions with buttons

3.2.1. Button A and Button B
The BBC micro:bit has two buttons, labelled A and B.

Button B

Photo by Gareth Halfacree, CC BY-SA 2.0.
Using these buttons, we can make the micro:bit do different things when we press the different buttons.

The A is block can be used to see if a button is currently pressed.

3.2.2. Making decisions

All our programs so far have shown images, or measured the temperature and scrolled it on the display.
We call this "output” — and our programs have done the same thing every time we run them.

We also want our programs to react to things — for example, pressing a button. We call this "input".

This flowchart describes a process (or algorithm) that makes the program run differently if a button is
pressed:

Is button
pressed?

Show image

The diamond requires a yes or no decision — the answer determines which line we follow. If the answer is
yes, we do the extra step of showing the image. If the answer is no no, we skip it.

3.2.3. Using the i+ block

We can use an block to make the decision in the orange diamond of the flowchart: is button A being
pressed?

if [button XD pressed
=
show (‘ Il Animals + DUCK -~

Try running this program and then pressing Button A.

It doesn't work! Why not?!
Because the code runs too fast — the program ends before we can press the button!

We need to keep checking whether the button is pressed ...

Q Use your mouse or keyboard

Press the buttons in the examples either by clicking with your mouse, or by pressing A or B on your
keyboard.

3.2.4. Decisions inside the loop

We fix this by putting the block inside a

micro:bit loop

if [button (XD pressed

M ————]
show (‘ l=le[=8 Animals + DUCK -

Try running this example, and pressing button A (or the A on your keyboard):

Now it works! Whew!

The block only runs the block if Button A is pressed — and the loop keeps running, around and
around, checking if Button A is pressed or not.

3.2.5. Decision loop flowchart

Here's a flowchart for a decision inside a loop:

Is button
pressed?

Show image

See how it works? Follow the arrows around the loop:

o Is the button pressed?
+ Yes! OK, show the image.
« No! OK, no image then.
+ ...and around the loop we go!
o Is the button pressed?
o Yes! OK, show the image.
o No! OK, no image then.
o ...and around the loop we go!
= Is the button pressed?

(... you get the idea.)

3.2.6. Problem: Rain, rain, go away!]

Rain, rain, go away ... or at least let me get my umbrella!

Write a program to scroll Rain, GO! when button A is pressed.

1) Make an block, so that if the A button is pressed, then the words Rain, GO!

2) Putthe inside a so that it checks if the button is pressed forever!

Here's what your code should do — in the example below, click on » and press the A button to try it out.

You'll need

program.blockly

micro:bit loop

scroll ["@"
button (XD pressed

Testing

(0 Checking that your code contains an infinite loop.

[0 Testing that the display starts off being blank.

[0 Testing that the display scrolls correct words down when the A button is pressed.
[0 Testing that it went back to a blank screen afterwards.

[0 Testing that it continues to work multiple times.

3.3. More decisions!

3.3.1. What i s?
The micro:bit has more than one button.
We can use more than one if !

Run » the example below, and try pressing the A and B buttons!

micro:bit loop

if [button (¥ pressed

L8 kL) Other - UMBRELLA - ||
—

if (button (358 (B pressed

SRR Foces + HAPPY - J
— '

You can change the micro:bit images using buttons! &%

3.3.2. Problem: Sun or rain? Ed

Will it be sunny today, or pour with rain?

Make your own weather predictor: write a program to scroll sun! if button A is pressed, and Rain! if B is
pressed.

You'll need a block, and two blocks — so we've made sure you have those. The rest is up to you!

Run this example to see how your code should work — try pressing A and B:

You'll need

program.blockly

micro:bit loop

Testing

(0 Checking that your code contains an infinite loop.

(0 Testing that the display starts off blank.

(O Testing that it scrolls "Sun!" when the A button is pressed.

(J Testing that it scrolls "Rain!" when the B button is pressed.

(0 Testing that it scrolls "Sun!" then "Rain!" when the A button then the B button is pressed.

[0 Testing that it continues to work multiple times.

3.3.3. Decisions with two options

So far, we've asked if the button is pressed, and if the answer is "yes", we have displayed an image. But we
didn't actually do anything if the answer was "no", the loop just started again.

Sometimes when we make a decision, we might care about both answers. If we ask "Is the button
pressed?" we could:

« Show an image if the answer is "yes".
« Hide the image (clear the display) if the answer is "no".

That's the decision shown in this flowchart:

Is button
pressed?

Show image Clear display

3.3.4. The == block

For decisions with two options we use the if/clse block.
Run P the example below, and then press the A button.

What happens if you press A again? Or hold down A?

B8O [EES Animals © DUCK - i

—

else | clear displa
o play

| micro:bit loop
if [button (XD pressed .

When A is pressed, the image appears. When it is not pressed, the image goes away because the program
runs

3.3.5. Problem: Smile for the camera! Ed

Smile for the camera! B&**click!** @)

Let's pretend the micro:bit is a camera, and Button A takes your photo. You have to smile when the button
is pressed ... but when it's not pressed, you don't have to.

Write a program that shows a happy face Faces HAPPY while Button A is pressed, and a sad face

Faces SAD when no button is pressed.

We've given you a start — your job is to fill in the gaps in the and blocks to show the correct
images.

Here's what it should look like — click » to run and then try pressing the A button:

You'll need

program.blockly

micro:bit loop

button (EED pressed

Testing

O Checking that the display starts off showing a sad face.

(J Checking that it becomes happy.

(0 Expected that it went back to a sad face after the button was released.

(0 Testing that it continues to work multiple times.

3.4. BYO images

3.4.1. LEDs on display

So far, every time we've used an image, it's been from micro:bit's collection of built-in images — like the
duck, the giraffe, the heart, the smiley-face.

What if you want to show something that isn't in the micro:bit's list of images? What if you want to make
your own image?

3.4.2. Five by five

It's easy to make your own images for the micro:bit. You just need to tell it which lights on the display to
turn on.

The display is a 5-by-5 grid of LEDs, and we can tell the micro:bit to turn them on and off as we like using
the block — here's an example, click » to see what the custom image is:

el eyl [N 90909:09990:99999:09990:90909 M

3.4.3. Make your own image

In the block, we use 25 numbers to control the 25 LEDs. Each number tells an LED how
bright it should be:

+ a0 means the LED is off
« numbers from 1 to 8 make the LED brighter and brighter
« a9 turns the LED is on as bright as it can go

For each row of five LEDs we write five numbers, followed by a colon () — and so we end up with five lots
of five numbers, like this:
90000:09000:00900:00090:00009

Run » the example below to see what image those numbers make:

custom image # 90000:09000:00900:00090:00009 S=

It turns on the first LED in the first row, the second LED in the second row, the third LED in the third row
... you get the idea?

What image do you get if you change the numbers in the example above to:
11111:33333:55555:77777:99999?

What about

00000:09090:00000:90009:099907

Copy those into the example and run to see if you guessed right!

3.4.4. Problem: A bit of sunshine

The sun is coming out! 38 &

Create your own custom image of the shining sun — click » to see what it looks like:

The image is created from these numbers:
60906:06960:99999:06960:60906

1 a
2) Copy the numbers above into the block
Easy, isn't it?

Testing
(0 Testing that the display is showing the sun image.

3.4.5. Custom Image Playground
Make your own images! (This part is just for messing around to see what you can come up with.)

What do you think these numbers would make in the custom image block?
00900:00900:00900:00000:00900

Run! » the example below! to see! if you're right!!!!

custom image 1 00900:00900:00900:00000:00900 J=

Now try out your own images — change the numbers in the example to make any image you like. See if
you can make a face, or an animal.

Remember you always need five groups of five numbers, with a colon (:) between them.

Try different brightnesses — remember 9 is bright, 5 is medium brightness, 1 is very dim, and O is off.

3.5. Even more decisions!

3.5.1. if else if else if else if else ...

Sometimes, there are lots of different possible decisions. For example, your program could show a duck if
button A is pressed, a giraffe if button B is pressed ... and show nothing at all if no button is pressed.

We can program these complex decisions by using if and else if blocks, like this:

micro:bit loop

if [button (EED pressed

S b Animals © DUCK - ||
| g .

elseif | button (I XD pressed

80 e Animals -+ GIRAFFE - |
—

else | clear displa
— 2V

The if does button A and shows a duck, and else if does button B and shows a giraffe. The final else
captures all other decisions — in this case, that's just pushing neither of the buttons! Try it out by clicking
» and trying out the two buttons:

3.5.2. Problem: Whatever the weather

Sunshine $&? Or rain ()?
Time to update your weather predictor! Write a program that will display:

« acustom image of the sun if button A is pressed
« acustom image of a raindrop if button B is pressed, and
« acustom image of a question mark when no button is pressed.

We have given you a start already — your job is to put the blocks in place, and add the custom images.
The custom images are created from these numbers:

« Sun: 60906:06960:99999:06960:60906
« Raindrop: 00600:06960:69996:69996:06960
« Question mark: 09990:90009:00990:00000:00900

Click » to see what your program should look like — try pressing buttons A and B:

You'll need

program.blockly

micro:bit loop

if [button (XD pressed .

customimage = "@"

show

customimage = "@"

button (5B (XD pressed

customimage = "@"

Testing
O Testing that the display is showing a question mark at start.
O Testing that the display is showing the sun image when A is tapped.

(0 Testing that the display is showing the raindrop image when B is tapped.

3.6. Summary

3.6.1. Problem: Tortoise and Hare Ed

Which of the following code snippets will correctly display an image of tortoise whenever the micro:bit's
button A is pressed, and an image of a hare (OK, a rabbit then) whenever button B is pressed, but no image
at all when no button is pressed?

Testing
O That's right!

3.6.2. Up Next: Smart Garden!

You're ready!

You've got your temperature sensor and your soil moisture sensor. You know about , and making
decisions with buttons and blocks. You can make your own

It's time to put it all together to make your very own Smart Garden.

PUTTING IT ALL TOGETHER

4.1. Let's make a Smart Garden

4.1.1. Piece by piece

You're ready to put together your final Smart Garden project. Here's what you're going to make in this last
part of the challenge:

« First, you'll write code to measure the temperature when Button A is pressed, and display the
temperature with a custom image.

« Then you'll make a program to measure soil moisture when Button B is pressed, and display it with a
happy face if there is enough water, or a sad face if the soil is dry.

« Finally, you'll put it all together, with code to display a custom flower image when no button is
pressed.

Here's the video again of the Smart Garden in action:

Your final project. (https:/groklearning-cdn.com/modules/cU5geH650KwqHZLrVZLEZg/SmartGarden4.mp4).

https://groklearning-cdn.com/modules/cU5geH65oKwqHZLrVZLEZg/SmartGarden4.mp4

4.2. First, the temperature button

4.2.1. Problem: Temperature on A =

First you'll create the temperature sensor. Build a program that, when button A is pressed, measures the
temperature and displays it nicely with a custom sunshine image like this: =§§§» 28 deg

« When no button is pressed, the program should clear the display.

« When button A is pressed, it should display a custom image of the sun from the numbers
60906:06960:99999:06960:60906 for one second, then scroll the temperature reading, and then
scroll deg

Your program should run like this — click » and then press button A:

25°C
Q Hint
You're going to need a block and an block. You'll also need to remember how to !
Testing

(0 Checking that your code contains an infinite loop.

(0 Testing that the screen is blank at the start.

(0 Testing that an image of the sun is displayed.

[0 Testing that the sunshine image image appears for 1 second.
[Testing that your program scrolls the temperature.

(0 Testing that deg scrolls past.

(0 Testing that the code works for different temperatures.

4.3. Then, the soil moisture button

4.3.1. © comparisons

We have seen how to use blocks using buttons to make decisions. But there are other ways to make a
decision.

For example, you could make a decision based on the — if it's less than 20 degrees, you're
sad, but if it's 20 degrees or warmer, you're happy!

The way we do this sort of decision is with a comparison block — try out this example:

e [£

Ry
Chlo BT ETeY Faces ¥ SAD -

I ey
S el s Faces + HAPPY ~

28°C

The comparison block can compare two numbers in all sorts of ways — you can make a decision when
the first number is:

« greater than > the second number

» greater than or equal to = the second number
o lessthan < the second number

« less than or equal to < the second number

« equalto = the second number

« not equal to # the second number

Try changing the example by clicking on the < and choosing a different comparison. What happens if

you change the number 20 to 30 ? Give that a try, and run the example again.

4.3.2. Comparison flowchart

The flowchart for a decision that compares two numbers looks like this:

yes no

4.3.3. Problem: Water me, please! Ex

We want our soil moisture sensor to tell us when the plant needs watering.

Remember that low numbers mean the soil is dry, and high numbers mean the soil is moist? Write a
program to read in the moisture level from the sensor connected to pine, and then:

- If thereadingis 600 or more, the program should scroll
I'm OK!
« Otherwise (when the reading is less than 600), the program should scroll water me!

We've given you an block and a comparison block to get you started. You also need to keep the
program running with a , SO you can test it with different moisture levels.
You'll need the right kind of comparison — click on the = to choose from the different comparisons.

Your program should run like this — click » to see, and move the moisture slider up and down:

211

You'll need

program.blockly

ifl
= . O

else

Testing

O Checking that your code contains an infinite loop.

O Testing that the display scrolls "Water me!" when moisture is 300.
(O Testing that the display scrolls "I'm OK!" when moisture is 900.

(0 Testing that the display scrolls "I'm OK!" when moisture is 600.

(0 Testing that the animation loops continuously.

4.3.4. Problem: Moisture on B Ed

OK, time to write the full moisture sensor program.
Here's how it's going to work — when button B is pressed, do the following:

- show a custom image of a raindrop for one second, using the image numbers
00600:06960:69996:69996:06960

« Make a decision using an , checking the soil moisture reading at pine
o If the soil moisture is < , the soil is dry — so show a sad face image for one second

o Otherwise (if the soil moisture is 600 or greater), it has enough water — so display a happy face
image for one second
« finally, scroll the moisture reading

Q Hint!

This one's tricky — you'll need an block inside an block! We've given you both of them, your
job is to work out where they go, and fill in the gaps.

Your program should run like this — click » and press button B:

211

You'll need

program.blockly

micro:bit loop

Testing

[0 Checking that your code contains an infinite loop.

(0 Testing that the raindrop image image appears.

(J Testing that the raindrop image image appears for 1 second.

[0 Testing that the HAPPY face image appears.

(0 Testing that the SAD face image appears for low moisture.
[0 Testing that the HAPPY face stays for 1 second.
[0 Testing that the SAD face stays for 1 second.

(O Testing that your program does everything.

4.4. Hello, Smart Garden!

4.4.1. Problem: The Full Smart Garden! Ed

Now it's time to put everything together! §& 3 ()
Write the full Smart Garden program that does the following:

o If button A is pressed:
o scroll T:
o then scroll the temperature reading
o then scroll deg
o If button B is pressed:
o display a custom image of a raindrop from the numbers 00600:06960:69996:69996:06960 for
one second
o then make a decision about how dry the soil is
=« if the soil moisture reading on pine is < 600, show a sad face image for one second
= otherwise (if moisture > 600), show a happy face for one second
o after the sad/happy face, scroll the moisture reading
« When no button is pressed, the micro:bit displays a custom image of a flower, using the image
numbers 00900:09590:00900:50505:05550

We've given you parts of the solutuions to the previous "Temperature on A" and "Moisture on B" problems.
Your job is to bring everything together into one program that does it all!

Your program should run like this — click », press the buttons and move the sliders:

286°C
211

You'll need

program.blockly

scroll | "@"
, show [cystom image
scroll number (temperature

sleep for . ms

scroll | "@" '

sleep for | ELR) | 'ms
. |

Testing

O Checking that your code contains an infinite loop.

(0 Testing that the display starts with the flower image.

[0 Testing that the flower image stays for 1 second.

O Testing that the display scrolls T.

(J Testing that the display scrolls the temperature reading.
(0 Testing that the display scrolls deg.

(0 Testing that the entire temperature reading works.

(O Testing that the raindrop image appears for button B.
[0 Testing that the raindrop image appears for 1 second.
(0 Testing that the HAPPY face appears for high moisture.
[0 Testing that the HAPPY face stays for 1 second.

O Testing that the SAD face appears for low moisture.

[0 Testing that the SAD face stays for 1 second.

[0 Testing that the entire moisture part works.

(0 Testing that the entire program works.

4.5. You did it! High 5!

4.5.1. Congratulations!

You made it! You've created a Smart Garden to measure temperature and soil moisture, and along the way
you have learned:

e how to images and , and make your own

e how to show the , and connect probes to the micro:bit pins to soil moisture
how to use and the micro:bit's buttons to make decisions

« how to compare numbers to help make decisions

Now that you have your Smart Garden, you can use it for some scientific investigating ...

4.5.2. A Smart Garden Investigation

There are lots of different investigations you could do, using your Smart Garden to help look after your
plants. You could:

- investigate how plants grow at different temperatures
» see whether different amounts of water affects how well seeds germinate
- test how changing the amount of sunshine that plants get affects their growth

In that last idea, for example, you could use the Smart Garden to make sure the temperature and soil
moisture is kept the same for all plants in your investigation — while giving different groups of plants
different amounts of sunlight. This helps you to make sure this is a fair test.

We have created an investigation that you might like to try out, called "How To Care For Your Plant!". You
can download the investigation worksheet here (https:/groklearning-
cdn.com/modules/vgxnevP8WvyWyKKQvoc2jV/ACA-SmartGardenlnv-56.pdf).

https://groklearning-cdn.com/modules/vgxnevP8WvyWyKKQvoc2jV/ACA-SmartGardenInv-56.pdf

Australian

How To Care For Your Plang
A micro:bit Smart Garden Investigatiop,
Overview:

You have been given g g Petplant, but the fape gy £9me off and you o't kngy
how o take carg of itl

You will collect data to manjtor g health of g, Plant. Based on Observations ang data
Collected with your gy, bit Smart Garden, y, willcroate a pamphjet ©utlining the begt
Care instructions for the plant,
Materigjs;

* A micro:bit With completaq and working Smart Garden Project, which ‘an monitor

<3Wmmdahbdlemwuhsewmon 'ng:
* 2 hours to anafygg g, . roklearm
sttt https:/groklearnin
Methoq:

1. Setup the micro:bit with Powerbattery any the Moisture sensorg 35 Shown in the.
Picture below, ang 1gey the code thoroughy r, 80€ that it is measuring temperaturg
and soil moistyre. Property,

2- Choose a tocation 1, the classraom/schoe) 2188 Where your piang s be piaceg,

Plant and migr;pt SEUP Should 0t bg meyey auring the investigation,

3. Test the micro set-up again,

Want more roy,

'S depenc u wil
Plant. To got 5 goog S8t of data, you gy 2im 0 monitor it at jeagt once
school day, v, May like ta take photos pf

-56.pdf)
. A-SmartGar Inv-56.pdf)
EVP8WVYﬂVKKQVOC2JV/Av$ WyKKQvoc2jV/ACA-SmartGardenlnv
cdn COm/modUIeS/Vg;n ning-cdn.com/modules/vgxnevP8Wvy’
- /groklearning-cdn.
Your Plant! (https
How To Care For

https://groklearning-cdn.com/modules/vgxnevP8WvyWyKKQvoc2jV/ACA-SmartGardenInv-56.pdf
https://groklearning-cdn.com/modules/vgxnevP8WvyWyKKQvoc2jV/ACA-SmartGardenInv-56.pdf

4.5.3. Problem: Blockly micro:bit Playground)

This is the Smart Garden micro:bit playground! Use the blocks to build anything you like.

No marks are awarded here — it's a place where you can just muck around and see what you can build.
We've included all of the blocks you've used so far, and a bunch of new ones you may not have seen
before. Explore, try out different things, make something new.

Q Save or submit your code!

There are no points to be earned for this question, so you can submit whatever code you like. Make
sure you save programs that you want to keep!

You'll need

components.json

Testing
O It's a playground --- nothing to mark!

